复杂转子-轴承-汽封耦合系统的非线性振动分析

袁铭鸿1,童水光1,2,从飞云2,李发宗1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 66-73.

PDF(2886 KB)
PDF(2886 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 66-73.
论文

复杂转子-轴承-汽封耦合系统的非线性振动分析

  • 袁铭鸿1,童水光1,2,从飞云2,李发宗1
作者信息 +

Vibration analysis of a nonlinear rotor-bearing-seal system

  • UAN Ming-hong1,TONG Shui-guang1,2,CONG Fei-yun2,LI Fa-zong1
Author information +
文章历史 +

摘要

基于非线性动力学和转子动力学理论,综合考虑Muszynska非线性汽封力、非线性油膜力和转子不平衡量的耦合作用,建立了双叶轮-轴承交错布置的复杂转子-轴承-汽封系统动力学模型。采用有限元法(FEM)推导系统运动微分方程,编程计算了系统转速、圆盘偏心量、汽封长度和汽封间隙等参数对系统动力特性的影响,并利用分岔图、频谱图、相轨迹和Poincare映射图表征了系统的运动性态。研究表明:耦合系统具有高度非线性,随着参数的变化系统呈现出周期运动、倍周期运动、准周期运动和混沌运动等复杂动力学行为。通过减小圆盘偏心,增加系统汽封长度,选取合适的汽封间隙有利于提高转子-轴承-汽封系统的稳定性,改善系统的运动特性。

Abstract

Based on the theory of nonlinear dynamics and rotor dynamics, a new complicated rotor-bearing-seal system of double impeller-bearing staggered arrangement model, coupling the Muszynska’s nonlinear seal force, the nonlinear oil film force and the mass eccentricity of the disk, is proposed. The finite element method(FEM) is applied to derive the motion differential equation of system and programming analysis the effects of system speed, disk eccentricity, seal length and seal clearance on the dynamic characteristics of the system. By using the bifurcation diagrams, frequency spectrums, phase trajectory maps, Poincare maps, the dynamic state of the system is represented. The studies demonstrate that coupling system is highly nonlinear; with parameters change the system exhibits rich forms of dynamic behaviors including periodic, multi-periodic, quasi-periodic and chaotic motion. Small disk eccentricity, long seal length and suitable seal clearance is beneficial to improve the stability of the system.

关键词

非线性振动 / 转子动力学 / 有限元法 / 分岔 / 混沌

Key words

nonlinear vibration / rotor-dynamics / finite element method (FEM) / bifurcation / chaos

引用本文

导出引用
袁铭鸿1,童水光1,2,从飞云2,李发宗1. 复杂转子-轴承-汽封耦合系统的非线性振动分析[J]. 振动与冲击, 2016, 35(9): 66-73
UAN Ming-hong1,TONG Shui-guang1,2,CONG Fei-yun2,LI Fa-zong1. Vibration analysis of a nonlinear rotor-bearing-seal system[J]. Journal of Vibration and Shock, 2016, 35(9): 66-73

参考文献

[1] SHI M., WANG D., ZHANG J.. Nonlinear dynamic analysis of a vertical rotor-bearing system[J]. Journal of Mechanical Science and Technology, 2013, 27(1): 9-19.
[2] 张华彪,陈予恕.非线性转子的反向全周碰摩响应[J]. 振动与冲击,2013,32(10):84-90.
ZHANG Hua-biao, CHEN Yu-shu. Reverse full annular rub of a nonlinear rotor system[J], Journal of Vibration and Shock, 2013,32(10):84-90.
[3] WU J.. Prediction of lateral vibration characteristics of a full-size rotor-bearing system by using those of its scale models[J]. Finite Elements in Analysis and Design, 2007,43:803-816.
[4] 何洪军,荆建平. 非线性转子-密封系统动力学模型研究[J]. 振动与冲击,2014,33(10):73-76.
HE Hong-jun, JING Jian-ping. Dynamic model of a nonlinear rotor-seal system[J]. Journal of Vibration and Shock, 2014,33(10):73-76.
[5] ZENG Y., ZHANG L., GUO Y., et al. The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets[J]. Nonlinear Dynamics, 2014,76(4):1921-1933.
[6] MUSZYNSKA, A. Improvements in lightly loaded rotor/bearing and rotor/seal models[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988,110(2):129- 136.
[7] MUSZYNSKA, A., Bently, D.E. Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines[J]. Journal of Sound and Vibration, 1990, 143(1): 103-124.
[8] LI, W., YANG, Y., SHENG, D.R., et al. Nonlinear dynamic analysis of a rotor/bearing/seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011,12(1):46 -55.
[9] 成玫,孟光,荆建平.转子-轴承-密封系统的非线性振动特性[J].上海交通大学学报,2007,41(3):398-404.
CHENG Mei, MENG Guang, JING Jian-ping. The nonlinear dynamical behaviors of a rotor-bearing-seal system[J]. Journal of Shanghaijiaotong University, 2007,41(3):398-404.
[10] 成玫,孟光,荆建平.非线性“转子-轴承-密封”系统动力分析[J]. 振动工程学报,2006,19(4):519-524.
CHENG Mei, MENG Guang, JING Jian-ping. Dynamic analysis of a rotor-bearing-seal nonlinear system[J]. Journal of Vibration Engineering, 2006, 19(4):519-524.
[11] ZHOU, W., WEI, X., WEI, X., et al. Numerical analysis of a nonlinear double disc rotor-seal system[J].  Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014,15(1):39-52.
[12] 于海,陈予恕,曹庆杰.多自由度裂纹转子系统非线性动力学特性分析[J]. 振动与冲击,2014,33(7):92-98.
YU Hai, Chen Yu-shu, CAO Qing-jie. Nonlinear dynamic behavior analysis for a cracked multi-DOF rotor system[J], Journal of Vibration and Shock, 2014,33(7):92-98.
[13] LI, W., YANG Y., SHENG D.R., et al. A novel nonlinear model of rotor/bearing/seal system and numerical analysis[J]. Mechanism and Machine Theory, 2011,46:618-631.
[14] 李忠刚,孔达,焦映厚等. 转子-密封系统非线性动力学特性分析[J]. 振动与冲击,2009,28(6):159-163.
LI Zhong-gang, KONG Da, JIAO Yin-hou, et al. Nonlinear dynamic analysis of a rotor-seal system[J]. Journal of Vibration and Shock, 2009,28(6): 159-163.
[15] 徐小峰,张文.一种非稳态油膜力模型下刚性转子的分岔和混沌特性[J].振动工程学报,2000,13(6):247-252.
XU Xiao-feng, ZHANG Wen. Bifurcation and chaos of rigid unbalance rotor in short bearings under an unsteady oil-film force model[J]. Journal of Vibration Engineering, 2000,13(6):247-252.

PDF(2886 KB)

923

Accesses

0

Citation

Detail

段落导航
相关文章

/