气液两相流问题的高精度数值模拟

覃柏英 1 林贤坤2  荣吉利3  冯志伟3

振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 79-85.

PDF(3616 KB)
PDF(3616 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 79-85.
论文

气液两相流问题的高精度数值模拟

  • 覃柏英 1 林贤坤2  荣吉利3  冯志伟3
作者信息 +

High Precision Numerical Simulation of Gas-liquid Two-phase Flow

  • Qin Bo-ying1   Lin Xian-kun2   Rong Ji-li3   Feng Zhi-wei 3
Author information +
文章历史 +

摘要

采用加权三阶ENN格式离散Euler方程、LS运输方程及其重新初始化方程的空间导数,耦合三阶Runge-Kutta法离散它们的时间导数,LS法追踪运动界面和MGFM 法定义界面边界条件,探讨了气液两相流问题的高精度数值模拟。通过一维大密度大压力比实验的数值模拟,以及二维水下爆炸过程中冲击波的产生、传播、反射、透射和水面隆起等演化过程的数值模拟,验证了本文方法的可行性和稳定性,可实现气液两相流的高精度数值模拟及其运动界面的高分辨率追踪。

Abstract

Coupling with third-order Runge-Kutta, LS and MGFM, the weighted ENN3 scheme (WENN3) was used to discuss the numerical simulation of gas-liquid two-phase flow. WENN3 is applied to discrete the spatial derivative of Euler equation, LS transport equation and its reinitialization equation. Third-order Runge-Kutta is applied to discrete their time derivative. LS method is applied to track the moving interface and MGFM method is applied to define interface boundary condition. Using one-dimensional experiments with high density and high pressure ratio, and two-dimensional underwater explosion experiments to discuss evolution process of shock wave generation, propagation, reflection, transmission and surface uplift, numerical calculation of gas-liquid two-phase flow problem was performed, and the accuracy and reliability of the method was verified. From the results of numerical simulation, it indicates that this method has high resolution, high precision, and strong advantage in suimulating gas-liquid two-phase flow with high density, high pressure ratio and strong discontinuity, and can achieve high resolution tracking of the moving interface.

关键词

气液两相流 / ENN格式 / WENN格式 / Level Set法 / MGFM 法 / 界面追踪

Key words

Gas-liquid Two-phase Flow / ENN3 / WENN3 / Level Set / MGFM / Moving Interface Tracking

引用本文

导出引用
覃柏英 1 林贤坤2  荣吉利3  冯志伟3 . 气液两相流问题的高精度数值模拟[J]. 振动与冲击, 2016, 35(9): 79-85
Qin Bo-ying1  Lin Xian-kun2  Rong Ji-li3  Feng Zhi-wei 3. High Precision Numerical Simulation of Gas-liquid Two-phase Flow[J]. Journal of Vibration and Shock, 2016, 35(9): 79-85

参考文献

[1] Marshall G. A front tracking method for one-dimensional moving boundary problems[J]. SIAM Journal on Scientific Computing, 1986, 7(1): 252-263.
[2] S. Osher, J.A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12-49.
[3] B. Koren, M.R. Lewis, E.H. van Brummelen, B. van Leer. Riemann-problem and level-set approaches for homentropic two-fluid flow computations[J]. Journal of Computational Physics, 2002, 181: 654-674.
[4] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher. A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost gluid method)[J]. Journal of Computational Physics, 1999,152(2):457-492.
[5] Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2):651-681.
[6] 赵海涛,王成,宁建国. 可压缩多介质问题的高精度数值模拟[J]. 高压物理学报, 2013, 02: 261-267.
Zhao Hai-Tao, Wang Cheng, Ning Jian-Guo. High resolution of compressible multi-medium flow[J]. Chinese Journal of High Pressure Physics, 2013, 02: 261-267.
[7] Leandro D., Gryngarten, Suresh Menon. A generalized approach for sub- and super-critical flows using the Local Discontinuous Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253(1): 169-185.
[8] Jun Zhu, Tiegang Liu, Jianxian Qiu, Boo Cheong Khoo. RKDG methods with WENO limiters for unsteady cavitating flow[J].Computers and Fluids, 2012, 57(30): 52-65.
[9] Chunwu Wang, Chi-Wang Shu. An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method[J]. Journal of Computational Physics, 2010, 229(23): 8823-8843.
[10] Jun Zhu, Jianxian Qiu, Tiegang Liu, Boo Cheong Khoo. RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations[J]. Applied Numerical Mathematics, 2011, 61: 554–580.
[11] 魏海鹏, 符松. 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34(4): 48-52. 
WEI Hai-peng, FU Song. Multiphase models for flow field numerical simulation of a vehicle rising from water[J]. Journal of Vibration and Shock, 2015, 34(4): 48-52. 
[12] 张涵信, 贺国宏, 张雷. 高精度差分求解气动方程的几个问题[J]. 空气动力学学报, 1993,04:347-356.
Zhang hanxin, He Guohong, Zhang Lei. Some important for high order accurate difference solving gas dynamics equations[J]. Acta Aerodynamica Sinica, 1993,04:347-356. 
[13] Yiqing Shen, Ruquan Wang. A fifth-order accurate weighted ENN difference scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 1997, 02: 111-116.
[14] 陈荣三, 蔚喜军. 二维多介质可压缩流的RKDG有限元方法[J]. 计算物理, 2006,06:699-705.
Chen Rong-san, Yu Xi–jun. An RKDG finite element method for Two-dimensional compressible multi-media fluids[J]. Chinese Journal of Computational Physics, 2006,06:699-705.

PDF(3616 KB)

Accesses

Citation

Detail

段落导航
相关文章

/