参数激励驱动微陀螺系统的非线性振动特性研究

尚慧琳1,张涛1,文永蓬2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 102-107.

PDF(1729 KB)
PDF(1729 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 102-107.
论文

参数激励驱动微陀螺系统的非线性振动特性研究

  • 尚慧琳1,张涛1,文永蓬2
作者信息 +

Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation

  • SHANG Huilin1, ZHANG Tao1, WEN Yongpeng2
Author information +
文章历史 +

摘要

对于一类典型的切向梳齿驱动型微陀螺,建立两自由度、具有刚度立方非线性和参数激励驱动的微陀螺系统动力学模型。考虑主参数共振和1:1内共振的情况,利用多尺度法获得周期解的解析形式,并利用分岔理论,得到Hopf分岔条件,结合数值模拟系统的动力学响应,揭示系统参数对驱动和检测模态振幅和分岔行为的影响机制。研究结果表明,在1:1内共振和较大的载体角速度下,激励频率的变化容易引起微陀螺振动系统的多稳态解、振幅跳跃现象和概周期响应等复杂动力学行为。

Abstract

For a typical non-interdigitated combfinger actuated micro-gyroscope, a 2-DOF dynamic model with cubic nonlinear stiffness and parametric excitation was established. For the principal parametric resonance case and 1:1 internal resonance, the periodic solutions were obtained with the multi-scale method. Conditions of Hopf bifurcation of the periodic solutions were derived according to the theory of bifurcation. Then the dynamic responses of the system were simulated. Finally, the effect mechanism of the systems parameters on the modal amplitudes and bifurcation behaviors was analyzed. It was shown that the variation of the excitation frequency is easy to cause various complex dynamic behaviors of the microgyroscope vibrating system, such as, multi-stable solution, amplitude jump phenomena and quasi-periodic responses under a large angular speed of the carrier and 1:1 internal resonance.

关键词

微陀螺 / 静电力 / 主参数共振 / 多稳态现象 / 振幅跳跃现象

Key words

Micro-gyroscope / electrostatic force / principal parametric resonance / multi-stability / jump phenomenon

引用本文

导出引用
尚慧琳1,张涛1,文永蓬2. 参数激励驱动微陀螺系统的非线性振动特性研究[J]. 振动与冲击, 2017, 36(1): 102-107
SHANG Huilin1, ZHANG Tao1, WEN Yongpeng2. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation[J]. Journal of Vibration and Shock, 2017, 36(1): 102-107

参考文献

[1] Naseri H, Homaeinezhad M R. Improving measurement quality of a MEMS-based gyro-free inertial navigation system[J]. Sensors and Actuators A: Physical, 2014, 207: 10-19.
[2] 张丽杰, 常佶. 小型飞行器 MEMS 姿态测量系统[J] .振动、测试与诊断, 2010, 30(6): 699-702.
Zhang L J, Chang J. MEMS -Based Attitude Measurement System for Miniature Air Vehicle[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(6): 699-702.
[3] Younis M I. MEMS Linear and Nonlinear Statics and Dynamics[M]. Springer NewYork, 2011.
[4] Acar C, Shkel A. Inherently Robust Micromachined Gyroscopes With 2-DOF Sense-Mode Oscillator[J]. Journal of Microelectromechanical Systems, 2006, 15(2): 380-387.
[5] Said E A, Kanber M S, Tayfun A. A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure[J]. Sensors and Actuators A: Physical, 2007, 135(1): 34-42.
[6] Oropeza-Ramos L A, Burgner C, Turner K L. Robust micro-rate sensor actuated by parametric resonance[J]. Sensors and Actuators A: Physical, 2009, 152(1): 80-87.
[7] Park S, Horowitz R, Tan C W. Dynamics and control of a MEMS angle measuring gyroscope[J]. Sensors and Actuators A: Physical, 2008, 144(1): 56-63.
[8] Ali P, Hassan S. A parametric study on design of a microrate-gyroscope with parametric resonance[J]. Measurement, 2013, 46(8): 2661-2671.
[9] Acar C, Shkel A. MEMS vibratory gyroscopes[M]. Springer, NewYork, 2009.
[10] Liu K, Zhang W, Chen W, et al. The development of micro-gyroscope technology[J]. Journal of Micromechanics and Microengineering, 2009, 19(11): 113001.
[11] 罗跃生. 硅微型梳状线振动驱动式陀螺仪工作的微分方程模型[J]. 哈尔滨工程大学学报, 2003, 24(1): 49-53.
Luo Y S. Differential equation model for lateral comb drive micromachined silicon gyroscopes[J]. Journal of Harbin Engineering University, 2003, 24(1): 49-53.
[12] Kenig E, Tsarin Y A, Lifshitz R. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators[J].  Physical Review E, 2011, 84(1): 016212.
[13] Francesco B, Ferruccio R, Elisabetta Leo, Guido S. Nonlinear dynamics of vibrating MEMS[J]. Sensors and Actuators A: Physical, 2007, 134(1): 98-108.
[14] 李欣业, 张利娟, 张华彪. 陀螺系统的受迫振动及其时滞反馈控制[J]. 振动与冲击, 2012, 31(9): 63-69.
Li X Y, Zhang L J, Zhang H B. Forced vibration of a gyroscope system and its delayed feedback control[J]. Journal of Vibration and Shock, 2012, 31(9): 63-69.
[15] 盛 平,王寿荣,吉训生,等. 硅微机械谐振陀螺仪的非线性分析[J]. 中国惯性技术学报, 2006, 14(6): 60-63.
Sheng P, Wang S R, Ji X S, et al. Nonlinear analysis on silicon micromachined resonant gyroscope[J]. Journal of Chinese Inertial Technology, 2006, 14(6): 60-63.
[16] 文永蓬, 尚慧琳. 微陀螺动力学建模与非线性分析[J]. 振动与冲击, 2015, 34(4): 69-73.
Wen Y P, Shang H L. Dynamic modeling and nonlinear analysis for a microgyroscope[J]. Journal of Vibration and Shock, 2015, 34(4): 69-73.
[17] 符毅强, 陈予恕, 侯磊,等. 反向旋转双转子系统滞后特性分析[J] . 振动与冲击, 2015, 34(15): 23-37.
Fu Y Q, Chen Y S, Hou L, et al. A counter-rotating dual-rotor system's hysteretic characteristics[J]. Journal of Vibration and Shock, 2015, 34(15): 23-37.
[18] 张小龙, 东亚斌. Duffing型隔振的力传递率及跳跃现象的理论分析[J]. 振动与冲击, 2012, 31(6): 38-42.
Zhang X L, Dong Y B. Theoretical analysis on force transmissibility and jump phenomena of Duffing spring type vibration isolator[J]. Journal of Vibration and Shock, 2012, 31(6): 38-42.
[19] 戎海武, 徐伟, 方同. 谐和与窄带随机噪声联合作用下Duffing 系统的参数主共振[J]. 力学学报, 1998, 30(2): 179-185.
Rong H W, Xu W, Fang T. Principal response of Duffing oscillator tocombined deterministic and narrow-band random parametric excitation[J]. Acta Mechanica Sinica, 1998, 30(2): 179-185.
[20] 贾尚帅, 孙舒, 李明高. 基于谐波平衡法的双稳态压电发电系统非线性振动特性研究[J]. 振动与冲击, 2014, 33(6): 170-173.
Jia S S, Sun S, Li M G. Non-linear vibration analysis of bistable piezoelectic power generation system based on harmonic balance method[J] . Journal of Vibration and Shock, 2014, 33(6): 170-173.
[21] 郭抗抗, 曹树谦. 考虑材料非线性时压电发电悬臂梁的主共振响应分析[J]. 振动与冲击, 2014, 33(19): 8-16.
Guo K K, Cao S Q. Primary resonance of cantilevered piezoelectric energy harvesters considering nonlinearities of piezoelectric material[J] . Journal of Vibration and Shock, 2014, 33(19): 8-16.

PDF(1729 KB)

Accesses

Citation

Detail

段落导航
相关文章

/