[1] Muralidharan V, Sugumaran V. Rough set based rule learning and fuzzy classification of wavelet features for fault diagnosis of monoblock centrifugal pump[J]. Measurement, 2013, 46(9): 3057 -3063.
[2] Zhang X, Tang L, Decastro J. Robust fault diagnosis of aircraft engines: a nonlinear adaptive estimation-based approach [J]. IEEE Transactions on Control Systems Technology, 2013, 21 (3) :861-868.
[3] 段向阳,王永生,苏永生. 振动分析在离心泵空化监测中的应用[J]. 振动与冲击, 2011, 30(4): 161-165.
Duan Xiang-yang, Wang Yong-sheng, Su Yong-sheng. Vibration Analysis of Cavitation Monitoring in Centrifugal Pump[J]. Journal of Vibration and Shock, 2011, 30(4): 161-165.
[4] 王涛,李艾华,王旭平,等. 基于SVDD和距离测度的齿轮泵故障诊断方法研究[J]. 振动与冲击, 2013, 32(11): 62-65.
Wang Tao, Li Aihua, Wang Xu-ping, et al. Study on Fault Diagnosis Method for Gear Pump Based on Support Vector Domain Description and Distance Measure[J]. Journal of Vibration and Shock, 2013, 32(11): 62-65.
[5] Hancock K M, ZHANG Q. A hybrid approach to hydraulic vane pump condition monitoring and fault detection[J]. Transactions of the ASABE, 2006, 49(4):1203-1211.
[6] GAO Y, ZHANG Q, KONG X. Comparison of hydraulic pump faults diagnosis methods:Wavelet vs.spectral analyses[C]. ASME 2005 International Mechanical Engineering Congress and Exposition:73-78.
[7] 王杰华. 基于BP神经网络的离心油泵故障诊断研究[D]. 河北,河北工程大学,2013.
Wang Jie-hua. Fault diagnosis of centrifugal oil pump based on BP neural network[D]. He Bei, Hebei University of Engineering, 2013.
[8] Muralidharan V, V Sugumaran, V Indira. Fault diagnosis of monoblock centrifugal pump using SVM[J]. Engineering Science and Technology An International Journal, 2014. 17(3): 152-157.
[9] 洪涛,黄志奇,杨畅. 涡轮泵实时故障检测的快速支持向量机算法[J]. 仪器仪表学报, 2012,33(8):1786-1792.
Hong Tao, Huang Zhi-qi, Yang Chang. Fast support vector machine algorithm forturbopump real-time fault detection[J]. Chinese Journal of Scientific Instrument, 2012,33(8):1786-1792.
[10] 徐玉秀,杨文平,吕轩,等. 基于支持向量机的汽车发动机故障诊断研究[J]. 振动与冲击, 2013, 32(8): 143-146.
Xu Yu-xiu, Yang Wen-ping, Lv Xuan, et al. Study on fault diagnosis of car engine Based on Support Vector Machine[J]. Journal of Vibration and Shock, 2013, 32(8): 143-146..
[11] Huanhuan Chen, Qiang Wang, Yi Shen. Decision tree support vector machine based on genetic algorithm for multi-class classification[J]. Journal of Systems Engineering and Electronics, 2011,2 (4):322-326.
[12] Kezong Tang, Jingyu Yang, Haiyan Chen, Shang Gao. Improved genetic algorithm for nonlinear programming problems[J]. Journal of Systems Engineering and Electronics, 2011,22(3):540-546.
[13] 宋小杉,蒋晓瑜,罗建华,等. 基于类间距的径向基函数-支持向量机核参数评价方法分析[J].兵工学报,2012,33(2):203-208.
SONG Xiao-shan, JIANG Xiao-yu, LUO Jian-hua, et al. Analysis of the Inter-class Distance-based Kernel Parameter Evaluating Method for RBF-SVM[J]. Acta Armamentarii, 2012, 33(2):203-208.
[14] 王维刚,刘占生. 多目标粒子群优化的支持向量机及其在齿轮故障诊断中的应用[J]. 振动工程学报, 2013,26 (5):743-749.
WANG Wei-gang, LIU Zhan-sheng. Support vector machine optimized by multi-objective particle swarm and application in gear fault diagnosis[J]. Journal of Vibration Engineering, 2013,26 (5):743-749.
[15] Li K, Gao X, Tian Z, et al. Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit[J].Petroleum Science, 2013, 10 (1) :73-80.