为了降低振动载荷对结构的影响,以叠层式压电作动器作为主动隔振元件,以粘弹性材料作为主体设计被动隔振元件,提出了一种新型混合隔振器。以模拟刚体卫星为研究对象,建立了整星混合隔振系统的动力学模型,对混合隔振器的隔振原理进行了理论分析和数值仿真,在此基础上,利用单输入多输出PID控制方法设计主动控制器,对模拟刚体卫星混合隔振系统进行了试验研究。仿真和试验结果表明,与单纯被动隔振器相比,混合隔振器能够有效降低传递到结构上的振动载荷,特别是在结构固有频率附近隔振效果更加明显,从而显著提高了结构的安全性和可靠性。
Abstract
A new hybrid vibration isolator (HVI) with an laminated piezoelectric actuator used as an active vibration isolation component and viscoelastic material used to design a passive vibration isolation component was proposed to reduce the effects of vibration loads on structures. Taking a simulated rigid satellite as a study object, the dynamic model of the wholespacecraft hybrid vibration isolation system was established to analyze the vibration isolation principle of a HVI numerically. Then, the singleinput multipleoutput PID control method was used to design an active controller, tests were performed for the simulated rigid satellite hybrid vibration isolation system. The simulation and test results showed that a HVI can effectively reduce the vibration loads transmitted to structures compared with a pure passive vibration isolator, especially, near natural frequencies of structures, so the safety and reliability of structures can be improved significantly.
关键词
混合隔振器 /
叠层式压电作动器 /
粘弹性材料 /
反馈控制
{{custom_keyword}} /
Key words
hybrid vibration isolator /
laminated piezoelectric actuator /
viscoelastic material /
feedback control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 高俊,季宏丽,裘进浩. 基于层叠式PVDF作动器的混合隔振器的设计与特性研究[J]. 振动与冲击,2015,34(9):141-148.
GAO Jun, JI Hong-li, QIU Jin-hao. Design and characteristics analysis of hybrid isolator based on laminated PVDF actuator[J]. Journal of Vibration and Shock, 2015, 34(9): 141-148.
[2] Zhu X, Jing X, Cheng L. A magnetorheological fluid embedded pneumatic vibration isolator allowing independently adjustable stiffness and damping[J]. Smart Materials and Structures, 2011, 20(8): 085025.
[3] Zhu X, Jing X, Cheng L. Systematic design of a magneto- rheological fluid embedded pneumatic vibration isolator subject to practical constraints[J]. Smart Materials and Structures, 2012, 21(3): 035006.
[4] 李雨时,周军,钟鸣,等. 基于压电堆与橡胶的主被动一体化隔振器研究[J]. 振动、测试与诊断,2013,33(4):571-577.
LI Yu-shi, ZHOU Jun, ZHONG Ming, et al. Active and passive integration of vibration isolator based on piezoelectric- rubber[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(4): 571-577.
[5] Baz A. Optimization of energy dissipation characteristics of active constrained layer damping[J]. Smart Materials and Structures, 1997, 6(3): 360-368.
[6] Liao W H, Wang K W. Characteristics of enhanced active constrained layer damping treatments with edge elements, part 1: finite element model development and validation[J]. Journal of Vibration and Acoustics, 1998, 120(4): 886-893.
[7] Liao W H, Wang K W. Characteristics of enhanced active constrained layer damping treatments with edge elements, part 2: system analysis[J]. Journal of Vibration and Acoustics, 1998, 120(4): 894-900.
[8] Lam M J, Inman D J, Saunders W R. Vibration control through passive constrained layer damping and active control[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(8): 663-677.
[9] Li F, Kishimoto K, Wang Y, et al. Vibration control of beams with active constrained layer damping[J]. Smart Materials and Structures, 2008, 17(6): 065036.
[10] Zheng L, Zhang D, Wang Y. Vibration and damping characteristics of cylindrical shells with active constrained layer damping treatments[J]. Smart Materials and Structures, 2011, 20(2): 025008.
[11] Trindade M A, Benjeddou A. Hybrid active-passive damping treatments using viscoelastic and piezoelectric materials: review and assessment[J]. Journal of Vibration and Control, 2002, 8(6): 699-745.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}