传统叶片颤振分析多是基于单转子研究模型,发动机的紧凑性要求导致级间距减小,多排耦合作用对颤振的影响将不容忽视。本文采用自行开发的程序对某型1.5级高压压气机进行了流固耦合数值模拟,分析上、下游叶排对转子叶片颤振特性的影响。针对典型工况,分别进行了单转子模型,导叶转子模型,转子静子模型,导叶转子静子模型的叶片气动弹性稳定性分析。研究表明,激波振荡对颤振特性影响显著;多排环境下存在非定常压力波的反射和叠加,明显改变转子叶片表面的非定常压力幅值和相位,进而改变转子叶片气动弹性稳定性。多排干涉作用提高了转子叶片的气动阻尼,尤其是上、下游叶排同时作用时阻尼提高了近732.7%。
Abstract
Conventional blade flutter analysis is normally based on an isolated blade row model, the influence of multi-row aerodynamic coupling on blade flutter characteristics cant be ignored when rotor-stator gaps decrease due to aeroengine compact requirements. A fluidstructure coupled simulation for a 1.5stage HPC was conducted with a selfdeveloped algorithm to analyze the influence of upstream and downstream blade rows on rotor blade flutter characteristics. Aiming at a typical operation condition, rotor blades aeroelastic stability analyses were performed with an isolated rotor model, an IGV-rotor model, a rotorstator one and an IGV-rotorstator one, respectively. The results showed that the shock wave vibration influences the flutter stability significantly; there are reflection and superposition of unsteady pressure waves under the multirow environment, the amplitude and phase of unsteady pressures on the rotor blade surface are changed obviously and furthermore the blade aeroelastic stability is changed; multirow interferences raise the aerodynamic damping of rotor blade, especially, when the upstream and downstream blade rows act simultaneously, the damping value increases by nearly 732.7%.
关键词
颤振 /
全环多排 /
流固耦合 /
气动阻尼 /
压力波
{{custom_keyword}} /
Key words
blade flutter;full-Annulus /Multi-Row;fluid-structure interaction;aerodynamic damping /
pressure wave
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Srinivasan A V. Flutter and resonant vibration characteristics of engine blades[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(4): 742-775.
[2] 陈懋章. 风扇/压气机技术发展和对今后工作的建议[J]. 航空动力学报, 2002, 17(1): 1-15.
CHEN Mao-zhang. Development of Fan/Compressor Techniques and Suggestions on Further Researches[J]. Journal of Aerospace Power,2002,17(1):1-15.
[3] Srivastava R, Keith T G. Shock Induced Flutter of Turbomachinery Blade Row[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air.American Society of Mechanical Engineers, 2004.487-496.
[4] Vasanthakumar P. Computation of aerodynamic damping for flutter analysis of a transonic fan[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2011.1429-1437.
[5] Isomura K, Giles M B. A numerical study of flutter in a transonic fan[J]. Journal of turbomachinery, 1998, 120(3): 500-507.
[6] 张小伟,王延荣,许可宁.叶轮机械叶片颤振的影响参数[J].航空动力学报, 2011,26(7):1557-1561.
ZHANG Xiao-wei,WANG Yan-rong,XU Ke-ning.Effects of parameters on blade flutter in turbomachinery [J].Journal of Aerospace Power, 2011, 26(7):1557-1561.
[7] 张小伟,王延荣.叶片间相位角对叶片颤振的影响[J].航空动力学报, 2010,25(2):412-416.
ZHANG Xiao-wei,WANG Yan-rong.Influence of interblade phase angle on the flutter of rotor blades[J].Journal of Aerospace Power, 2010, 25(2):412-416.
[8] Im H S, Zha G C.Flutter prediction of a Transonic Fan With Travelling Wave Using Fully Coupled Fluid/Structure interaction[C]//ASME Turbo Expo 2013:Turbine Technical Conference and Exposition. American Society of Mechanical Engineers,2013.V07BT33A003.
[9] Sun Y, Ren Y X,Fu S,et al. The influence of rotor-stator spacing on the loss in one-stage transonic compressor[C]//ASME Turbo Expo 2009: Power for land, Sea and Air . American Society of Mechanical Engineers, 2009:1707-1715.
[10] Ng W F, Obrien W F, Olsen T L. Experimental investigation of unsteady fan flow interaction with downstream struts[J]. Journal of Propulsion and Power, 1987, 3(2): 157-163.
[11] Saren V E, Savin N M, Dorney D J, et al. Experimental and numerical investigation of airfoil clocking and inner-blade-row gap effects on axial compressor performance [J]. International Journal of Turbo and Jet Engines, 1998(15): 235-252.
[12] Buffurn D H. Blade row interaction effects on flutter and forced response[J]. Journal of Propulsion and Power, 1995, 11(2): 205-212.
[13] Hall K C, Silkowski P D.The influence of neighboring blade rows on the unsteady aerodynamic response of cascades[J]. Journal of Turbomachinery, 1997(119):85–93.
[14] Silkowski P D, Hall K C. A coupled mode analysis of unsteady multistage flows in turbomachinery[J]. Journal of Turbomachinery,1998(120), 410–421.
[15] Li H D,He L.Blade aerodynamic damping variation with rotor-stator gap:A computational study using single-passage approach[J]. Journal of turbomachinery, 2005,127(3): 573-579.
[16] Hsu K,Hoyniak D,Anand M S.Full-Annulus Multi-Row Flutter Analyses[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition.American Society of Mechanical Engineers, 2012.1453-1462.
[17] 郑赟.基于非结构网格的气动弹性数值方法研究[J]. 航空动力学报, 2009,24(9):2069-2077.
ZHENG Yun.Computational aeroelasticity with an unstructured grid method[J].Journal of Aerospace Power, 2009, 24(9): 2069-2077.
[18] 张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京:国防工业出版社, 2001.
ZHANG Jin, LIU Xiao-ping.Theory and numerical methods for modal analysis of turbomachine vibration[M].Beijing:National Defense Industrial Press,2001.
[19] 郑赟,杨慧.跨音速风扇全环叶片颤振特性的流固耦合分析[J].北京航空航天大学学报,2013,39(5):626-630.
ZHENG Yun,YANG Hui.Full assembly fluid/structured flutter analysis of a transonic fan[J].Journal of Beijing University of Aeronautics and Astronautics, 2013,39(5):626-630.
[20] ZHENG Yun, YANG Hui. Coupled fluid-structure flutter analysis of a transonic fan[J]. Chinese Journal of Aeronautics, 2011, 24(3): 258-264.
[21] Chima R V.Calculation of multistage turbomachinery using steady characteristic boundary conditions[R].Reston,VA:36th Aerospace Sciences Meeting &Exhibit ,1998.
[22] Mathur S R.Unsteady flow simulations using unstruck tured sliding meshes[R]. Reston, VA:25th AIAA Fluid Dynamics Conference, 1994.
[23] Vahdati M, Simpson G, Imtegun. Mechanisms for wide-chord fan blade flutter[J]. Journal of Turbomachinery, 2011, 133(4): 1396-1402.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}