多排环境下转子叶片气动弹性稳定性机理分析

杨慧 1,李振鹏 1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 146-152.

PDF(2299 KB)
PDF(2299 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 146-152.
论文

多排环境下转子叶片气动弹性稳定性机理分析

  • 杨慧 1 , 李振鹏 1
作者信息 +

Aeroelastic stability analysis of rotor blade under multi-row environment

  • YANG Hui, LI Zhenpeng
Author information +
文章历史 +

摘要

传统叶片颤振分析多是基于单转子研究模型,发动机的紧凑性要求导致级间距减小,多排耦合作用对颤振的影响将不容忽视。本文采用自行开发的程序对某型1.5级高压压气机进行了流固耦合数值模拟,分析上、下游叶排对转子叶片颤振特性的影响。针对典型工况,分别进行了单转子模型,导叶转子模型,转子静子模型,导叶转子静子模型的叶片气动弹性稳定性分析。研究表明,激波振荡对颤振特性影响显著;多排环境下存在非定常压力波的反射和叠加,明显改变转子叶片表面的非定常压力幅值和相位,进而改变转子叶片气动弹性稳定性。多排干涉作用提高了转子叶片的气动阻尼,尤其是上、下游叶排同时作用时阻尼提高了近732.7%。

Abstract

Conventional blade flutter analysis is normally based on an isolated blade row model, the influence of multi-row aerodynamic coupling on blade flutter characteristics cant be ignored when rotor-stator gaps decrease due to aeroengine compact requirements. A fluidstructure coupled simulation for a 1.5stage HPC was conducted with a selfdeveloped algorithm to analyze the influence of upstream and downstream blade rows on rotor blade flutter characteristics. Aiming at a typical operation condition, rotor blades aeroelastic stability analyses were performed with an isolated rotor model, an IGV-rotor model, a rotorstator one and an IGV-rotorstator one, respectively. The results showed that the shock wave vibration influences the flutter stability significantly; there are reflection and superposition of unsteady pressure waves under the multirow environment, the amplitude and phase of unsteady pressures on the rotor blade surface are changed obviously and furthermore the blade aeroelastic stability is changed; multirow interferences raise the aerodynamic damping of rotor blade, especially, when the upstream and downstream blade rows act simultaneously, the damping value increases by nearly 732.7%.

关键词

颤振 / 全环多排 / 流固耦合 / 气动阻尼 / 压力波

Key words

blade flutter;full-Annulus /Multi-Row;fluid-structure interaction;aerodynamic damping / pressure wave

引用本文

导出引用
杨慧 1,李振鹏 1. 多排环境下转子叶片气动弹性稳定性机理分析[J]. 振动与冲击, 2017, 36(1): 146-152
YANG Hui, LI Zhenpeng. Aeroelastic stability analysis of rotor blade under multi-row environment[J]. Journal of Vibration and Shock, 2017, 36(1): 146-152

参考文献

[1]  Srinivasan A V. Flutter and resonant vibration characteristics of engine blades[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(4): 742-775.
[2]  陈懋章. 风扇/压气机技术发展和对今后工作的建议[J]. 航空动力学报, 2002, 17(1): 1-15.
CHEN Mao-zhang. Development of Fan/Compressor Techniques and Suggestions on Further Researches[J]. Journal of Aerospace Power,2002,17(1):1-15.
[3] Srivastava R, Keith T G. Shock Induced Flutter of Turbomachinery Blade Row[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air.American Society of Mechanical Engineers, 2004.487-496.
[4]  Vasanthakumar P. Computation of aerodynamic damping for flutter analysis of a transonic fan[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2011.1429-1437.
[5]  Isomura K, Giles M B. A numerical study of flutter in a transonic fan[J]. Journal of turbomachinery, 1998, 120(3): 500-507.
[6]  张小伟,王延荣,许可宁.叶轮机械叶片颤振的影响参数[J].航空动力学报, 2011,26(7):1557-1561.
ZHANG Xiao-wei,WANG Yan-rong,XU Ke-ning.Effects of parameters on blade flutter in turbomachinery [J].Journal of Aerospace Power, 2011, 26(7):1557-1561.
[7]  张小伟,王延荣.叶片间相位角对叶片颤振的影响[J].航空动力学报, 2010,25(2):412-416.
ZHANG Xiao-wei,WANG Yan-rong.Influence of interblade phase angle on the flutter of rotor blades[J].Journal of Aerospace Power, 2010, 25(2):412-416.
[8]  Im H S, Zha G C.Flutter prediction of a Transonic Fan With Travelling Wave Using Fully Coupled Fluid/Structure interaction[C]//ASME Turbo Expo 2013:Turbine Technical Conference and Exposition. American Society of Mechanical Engineers,2013.V07BT33A003.
[9]  Sun Y, Ren Y X,Fu S,et al. The influence of rotor-stator spacing on the loss in one-stage transonic compressor[C]//ASME Turbo Expo 2009: Power for land,   Sea and Air . American Society of Mechanical Engineers, 2009:1707-1715.
[10] Ng W F, Obrien W F, Olsen T L. Experimental investigation of unsteady fan flow interaction with downstream struts[J]. Journal of Propulsion and Power, 1987, 3(2): 157-163.
[11] Saren V E, Savin N M, Dorney D J, et al. Experimental and numerical investigation of airfoil clocking and inner-blade-row gap effects on axial compressor performance [J]. International Journal of Turbo and Jet Engines, 1998(15): 235-252.
[12] Buffurn D H. Blade row interaction effects on flutter and forced response[J]. Journal of Propulsion and Power, 1995, 11(2): 205-212.
[13] Hall K C, Silkowski P D.The influence of neighboring blade rows on the unsteady aerodynamic response of cascades[J]. Journal of Turbomachinery, 1997(119):85–93.
[14] Silkowski P D, Hall K C. A coupled mode analysis of unsteady multistage flows in turbomachinery[J]. Journal of Turbomachinery,1998(120), 410–421.
[15] Li H D,He L.Blade aerodynamic damping variation with rotor-stator gap:A computational study using single-passage approach[J]. Journal of turbomachinery, 2005,127(3): 573-579.
[16] Hsu K,Hoyniak D,Anand M S.Full-Annulus Multi-Row Flutter Analyses[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition.American Society of Mechanical Engineers, 2012.1453-1462.
[17] 郑赟.基于非结构网格的气动弹性数值方法研究[J]. 航空动力学报, 2009,24(9):2069-2077.
ZHENG Yun.Computational aeroelasticity with an unstructured grid method[J].Journal of Aerospace Power, 2009, 24(9): 2069-2077.
[18] 张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京:国防工业出版社, 2001.
ZHANG Jin, LIU Xiao-ping.Theory and numerical methods for modal analysis of turbomachine vibration[M].Beijing:National Defense Industrial Press,2001.
[19] 郑赟,杨慧.跨音速风扇全环叶片颤振特性的流固耦合分析[J].北京航空航天大学学报,2013,39(5):626-630.
ZHENG Yun,YANG Hui.Full assembly fluid/structured flutter analysis of a transonic fan[J].Journal of Beijing University of Aeronautics and Astronautics, 2013,39(5):626-630.
[20] ZHENG Yun, YANG Hui. Coupled fluid-structure flutter analysis of a transonic fan[J]. Chinese Journal of Aeronautics, 2011, 24(3): 258-264.
[21] Chima R V.Calculation of multistage turbomachinery using steady characteristic boundary conditions[R].Reston,VA:36th Aerospace Sciences Meeting &Exhibit ,1998.
[22] Mathur S R.Unsteady flow simulations using unstruck tured sliding meshes[R]. Reston, VA:25th AIAA Fluid Dynamics Conference, 1994.
[23] Vahdati M, Simpson G, Imtegun. Mechanisms for wide-chord fan blade flutter[J]. Journal of Turbomachinery, 2011, 133(4): 1396-1402.

PDF(2299 KB)

Accesses

Citation

Detail

段落导航
相关文章

/