基于多维性能极限状态的概率地震需求分析

刘骁骁 1,吴子燕 1,王其昂 1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 181-187.

PDF(1982 KB)
PDF(1982 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 181-187.
论文

基于多维性能极限状态的概率地震需求分析

  • 刘骁骁 1 , 吴子燕 1,王其昂 1
作者信息 +

Probabilistic seismic demand analysis based on multi-dimensional performance limit states

  • LIU Xiaoxiao, WU Ziyan, WANG Qiang
Author information +
文章历史 +

摘要

基于概率地震需求分析(PSDA),分别采用增量动力和非线性时程分析,得到某框架结构的最大层间漂移比和最大加速度响应,通过定义多维性能极限状态的性能水准,计算该结构的多维地震易损性,联合地震动危险性曲线,建立了年平均超越概率的三重积分公式,采用梯形法求得50年内地震需求(漂移)危险性曲线。在此基础上,进行了同时考虑性能极限状态的随机性和相关性对结构需求危险性的敏感性分析。在性能极限状态不确定性中选择适当的变异系数(cidr cpfa)及相互作用因子NIDR,能够使年平均超越概率增加;相比单一极限状态,考虑二维极限状态的年平均超越概率也将提高。研究结果表明,本文所提方法可描述对多维响应参数敏感的结构破坏行为,可获得设计基准期内更加符合实际的结构需求危险性曲线,为震后损失估计提供可靠的理论依据。

Abstract

Based on probabilistic seismic demand analysis, the maximum inter-story drift ratio and the maximum peak floor acceleration of a frame structure were obtained with the incremental dynamic analysis and the nonlinear time history analysis, respectively. Then the seismic fragility curve of the structure considering bi-dimensional limit states was calculated. Combing this fragility curve with the seismic hazard curve, the structural seismic demand hazard curve in service life was gained. The randomness and dependency involved in multi-dimensional performance limit states were taken into account to analyze the sensitivity of the structural seismic demand hazards. The results showed that the proposed method can be used to describe the damage behavior of structures, it is sensitive to multiple response parameters; moreover, the mean annual exceeding probability increases if proper coefficients of variation (cidr cpfa) and interaction factor NIDR are selected; compared with a single limit state, the mean annual exceeding probability also increases considering bi-dimensional limit state. The proposed method provided a reliable theoretical basis for post-earthquake loss assessment.

关键词

概率地震需求分析 / 多维性能极限状态 / 增量动力分析 / 结构需求危险性 / 敏感性

Key words

Probabilistic seismic demand analysis / multi-dimensional performance limit state / incremental dynamic analysis / structural demand hazard curves / sensitivity analysis

引用本文

导出引用
刘骁骁 1,吴子燕 1,王其昂 1. 基于多维性能极限状态的概率地震需求分析[J]. 振动与冲击, 2017, 36(1): 181-187
LIU Xiaoxiao, WU Ziyan, WANG Qiang. Probabilistic seismic demand analysis based on multi-dimensional performance limit states[J]. Journal of Vibration and Shock, 2017, 36(1): 181-187

参考文献

[1] 曾志和,樊剑,余倩倩.基于性能的桥梁结构概率地震需求分析[J].工程力学,2012,29(3):156-162.
Zeng Zhihe, Fan Jian and Yu Qianqian[J]. Performance-based probabilistic seismic demand analysis of bridge structures[J]. Engineering mechanics, 29(3):156-162. (in Chinese)
[2] Cornell, C. A. Engineering seismic risk analysis[J]. Bulletin of the Seismological Society of America, 1968, 58(5):1583-1606
[3] Shome N. Probabilistic seismic demand analysis of nonlinear structures[R]. Ph.D., Stanford University, Ann Arbor, 1999
[4] Tothong, P. Probabilisitic seismic demand analysis using advanced ground motion intensity measures, attenuation relationships, and near-fault effects[R]. Ph.D., Stanford University, Ann Arbor, 2007
[5] Yun, S Y, Hamburger, R. O, Cornell, C. A, et al. Seismic performance evaluation for steel moment frames. Journal of Structural Engineering, 2002, 128(4), 534-545.
[6] Tothong P, Luco N. Probabilistic seismic demand analysis using advanced ground motion intensity measures[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(13): 1837-1860.
[7] 吴巧云,朱宏平,樊剑,等. 某框架结构的抗震性能评估[J]. 振动与冲击.2012,31(15):158-164
Wu Qiaoyun, Zhu Hongping, Fan Jian, et al. Seismic performance assessment on some frame structure[J] Journal of vibration and shock, 2012, 31(15), 158-164. (in Chinese)
[8] Cimellaro G P, Reinhorn A M, Bruneau M, et al. Multi-dimensional fragility of structure formulation and evaluation [R]. Report No.MCEER-06-0002, New York: Multidisciplinary Center for Earthquake Engineering Research, 2006.
[9] Cimellaro G P, Reinhorn A M. Multidimensional performance limit state for hazard fragility functions [J]. Journal of Engineering Mechanics, 2010, 137(1):47-60.
[10] Wang Q, Wu Z, Liu S. Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state [J]. Earthquake Engineering and Engineering Vibration, 2012, 11(2): 185-193.
[11] 孙鸿宾,吴子燕,刘骁骁. 基于多维性能极限状态的结构易损性分析[J].工程力学,2013,30(5):147-152.
Sun Hongbin, Wu Ziyan, Liu Xiaoxiao. Multidimensional performance limit state for structural fragility estimation [J]. Engineering mechanics, 2013, 30(5):147-152. (in Chinese)
[12] 王其昂,吴子燕,贾兆平.桥梁系统地震多维易损性分析[J].工程力学,2013,30(10):192-198.
Wang Qi’ang, Wu Ziyan, Jia Zhaopin. Multi-dimensional fragility analysis of bridge system under earthquake. Engineering mechanics, 2013, 30(10):192-198. (in Chinese)
[13] Vamvatsikos D, Cornell C A. Incremental dynamic   analysis [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491―514.
[14] Lin, L., Naumoski, N., Saatcioglu, M, Foo, S. Improved intensity measures for probabilistic seismic demand analysis. part 2: Application of the improved intensity measures. Canadian Journal of Civil Engineering, 2011, 38(1), 89-99.
[15] Baker, J. W, Cornell, A C. A vector‐valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering & Structural Dynamics, 2005, 34(10), 1193-1217.
[16] Jalayer F. Direct probabilistic seismic analysis: Implementing non-linear dynamic assessments [R]. PhD, Stanford University, Ann Arbor,2003.
[17] Kiureghian, A. D. Non-ergodicity and PEER's framework formula[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(13): 1643-1652.
[18] GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建
筑工业出版社, 2010.
GB 50011-2010, Classification of earthquake damage to buildings and special structures [S]. Beijing China Architecture Industry Press, 2010. (in Chinese)
[19] JGJ3 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2010.
JGJ3. Technical specification for concrete structures of tall building, China Architecture Industry Press, Beijing of China. 2010
[20] Mazzoni S, Mckenna F, Fenves G L. OpenSees command language manual [M]. Berkeley, CA:Pacific Earthquake Engineering Research Center. 2005:1-443
[21] ATC58-2, Preliminary evaluation of methods for defining performance [S]. Washington D.C: FEMA, 2006.
[22] FEMA445. Next-generation performance-based seismic
design guidelines [S]. Washington D.C.: FEMA, 2006.
[23] Cornell C A, Krawinkler, H. Progress and challenges in seismic performance assessment. PEER Center News, 2000, 3(2), 1-3.
 
 

PDF(1982 KB)

Accesses

Citation

Detail

段落导航
相关文章

/