分析弹性地基一般支承输流管道的动力学特性

包日东,李珊珊

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 201-206.

PDF(1674 KB)
PDF(1674 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 201-206.
论文

分析弹性地基一般支承输流管道的动力学特性

  • 包日东,李珊珊
作者信息 +

Dynamic characteristics of commonly supported fluid conveying pipes on elastic foundation

  • BAO Ridong, LI Shanshan
Author information +
文章历史 +

摘要

研究Pasternak双参数地基一般支承输流管道的线性固有频率及非线性动力学特性。综合考虑管道粘弹性系数、地基的剪切效应、线性刚度的影响,建立了系统运动微分方程。根据两端一般支承的边界条件推导出线性系统固有频率方程,分析了基础激励与脉动流作用下,流速对系统非线性动力学特性的影响。数值结果表明,管道一阶临界流速随弹性系数的增大呈现先增大后减小的趋势,当弹性系数足够大时,管道随流速的增加发生一阶、二阶模态耦合现象;系统响应随流速变化呈现由倍周期分岔过渡到混沌运动的特性;当管内流体流速足够大时,系统响应保持混沌运动状态。

Abstract

The linear natural frequencies and nonlinear dynamic characteristics of a fluidconveying pipe under commonly supported conditions on Pasternak-type two-parameter elastic foundation were investigated. Synthetically considering viscoelastic coefficient of pipe, and influences of shear effect and linear stiffness of foundation, the differential equations of motion of the piping system were established. The natural frequency equation of the linear piping system was derived with the commonly supported boundary condition. The effects of flow velocity on the nonlinear dynamic behavior of the system under foundation excitation and pulsating flow were analyzed. Numerical results showed that the first critical flow velocity of the pipe system has the trend of increasing firstly and then decreasing with increase in elastic coefficient; when elastic coefficient is large enough, the modal-coupling phenomena of the first mode and the second one of the pipe system occur with increase in flow velocity; the system response has the feature of transition from period-doubling bifurcation into chaotic motion with increase in of flow rate; the system response keeps the chaotic motion state under the condition of enough large flow velocity.

关键词

弹性地基 / 输流管道 / 固有频率 / 混沌运动 / 非线性动力学

Key words

elastic foundations / flow conveying pipe / natural frequency / chaotic motion / nonlinear dynamics

引用本文

导出引用
包日东,李珊珊. 分析弹性地基一般支承输流管道的动力学特性[J]. 振动与冲击, 2017, 36(1): 201-206
BAO Ridong, LI Shanshan. Dynamic characteristics of commonly supported fluid conveying pipes on elastic foundation[J]. Journal of Vibration and Shock, 2017, 36(1): 201-206

参考文献

[1]  金基铎, 邹光胜, 张宇飞. 悬臂输流管道的运动分岔现象和混沌现象[J]. 力学学报,2002, 34(34): 863-873.
Jin Ji-duo, Zou Guang-sheng, Zhang Yu-fei. Flutter and chaotic motions of a cantilevered fluid-conveying pipe[J]. Acta Mechanica Sinica, 2002,34(34):863-873. (in Chinese)
[2]  李宝辉, 高行山, 刘永寿, 等. 两端固支输流管道流固耦合振动的稳定性分析[J].机械设计与制造,2010, (48)2: 105-107.
Li Bao-hui, Gao Hang-shan, Li Yong-shou, et al. The stability analysis of liquid-filled pipes with fixed  bearing at  both ends under FSI vibration[J]. Machinery Design and Manufacture,2010,2;105-107. (in Chinese)
[3]  吴男,金基铎. 弹性地基两端铰支输流管的模态和固有频率[J].沈阳航空工业学院学报,2008, 25(1): 43-46.
Wu Nan, Jin Ji- duo. The mode and nature frequency of pinned- pinned pipes conveying fluid with elastic foundations[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2008,25(1);43-46. (in Chinese)
[4]  包日东, 金志浩, 闻邦椿. 一般支承条件下输流管道的非线性动力学特性研究[J].振动与冲击, 2009, 28(7):153-220.
Bao Ri-dong, Jin Zhi-hao, Wen Bang-chun. Nonlinear dynamic characteristics of a fluid conveying pipe under condition of commonly elastic supports[J]. Journal of Vibration and Shock, 2009,28(7);153-220. (in Chinese)
[5]  Lyon R H, Dejong R G. Theory and Application of Statistical Energy Analysis[M]. Boston: Butterworth-H einemann 1995.
[6]  黄益民,葛森,吴炜,等. 不同支承刚度对输流管道系统动力学特性完整性影响[J].振动与冲击, 2013, 32(7):165-168.
Huang Yi-min, Ge Sen, Wu Wei, et al. Effect of different supporting rigidities on dynamic characteristics integrity of a pipeline conveying fluid [J]. Journal Of Vibration and Shock.2013, 32(7):165-168. (in Chinese)
[7]  王忠民,冯振宇,赵凤群,等. 弹性地基输流管道的耦合模态颤振分析[J].应用数学与力学,2000,21(10):1060-1068.
Wang Zhong-min, Feng Zhen-yu, Zhao Feng-qun,et al.Analysis of coupled-mode flutter of pipes conveying fluid on the elastic foundation[J].Applied Mathematics and Mechanics,2000,21(10) : 1060-1068.(in Chinese)
[8]  王忠民,张战午,李会侠. 粘弹性地基上粘弹性输流管道的稳定性分析[J].计算力学学报, 2005,10, 22(5):613-617.
Wang Zhong-min, Zhang Zhan-wu, Li Hui-xia. Stability analyses of viscoelastic pipes conveying fluid on viscoelastic foundation[J]. Chinese Journal of  Computational Mechanics, 2005, 10, 22(5):613-617.
[9]  Dutta S C, Roy R. A critical review on idealization and modeling for interacion among soil–foundation-structure system[J]. Computers & Structures, 2002, 80(20-21): 1579-1594.
[10] 梁峰,金基铎,杨晓东,等. 弹性地基上输流管道的静态和动态稳定性研究[J].工程力学,2010,27(11):116-171.
Liang Feng, Jin Ji-duo, Yang Xiao-dong, et al. Static and dynamic stabilities of fluid pipes on elastic foundation[J]. Engineering-Mechanics, 2010,27(11):116-171. (in Chinese)
[11] 张紫龙,唐敏,倪樵. 非线性弹性地基上悬臂输流管的受迫振动[J].振动与冲击, 2013, 32(10):17-21.
Zhang Zi-long,Tang Min,Ni Qiao. Forced vibration of a cantilever fluid-conveying pipe on nonlinear elastic foundation[J]. Journal Of Vibration and Shock,2013, 32(10):17-21. (in Chinese)
[12] 包日东,金志浩,闻邦椿. 分析一般支承输流管道的非线性动力学特性[J].振动与冲击, 2008,27(7):87-90.
Bao Ri-dong,Jin Zhi-hao,Wen Bang-chun. Analysis of nonlinear dynamic characteristics of commonly supported fluid conveying pipe[J]. Journal of Vibration and Shock, 2008,27(7):87-90.(in Chinese)
[13] 包日东,闻邦椿.分析弹性支撑输流管道的失稳临界流速[J].力学与实践, 2007, 29(4):24-28.
Bao Ri-dong, Wen Bang-chun. Analysis of critical instability flowrate of pipeline conveying fluid with elastic supports[J]. Mechanics In Engineering, 2007, 29(4):24-28. (in Chinese)
[14] 赵学杰. 数值方法中Runge-Kutta方法改进的探讨[J].衡水学院学报, 2014, 16(4):23-26.
Zhao Xue-jie.Discussion on Improving Runge-Kutta Methods in Numerical Analysis[J]. Journal of Hengshui University, 2014, 16(4):23-26. (in Chinese)
[15] 朱洪来,白象忠. 流固耦合问题的描述方法及分类简化准则[J].工程力学, 2007, 24(10):92-99.
Zhu Hong-lai , Bai Xiang-zhong. Descreption method and simplified classification Rule [J]. Engineering Mechanics, 2007, 24(10):92-99. (in Chinese)

PDF(1674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/