弹体高速侵彻陶瓷复合厚靶的计算模型研究

殷文骏1.3,程怡豪1,宋春明1,2*,王明洋1,2,高飞1,2,文德生1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 223-229.

PDF(1210 KB)
PDF(1210 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 223-229.
论文

弹体高速侵彻陶瓷复合厚靶的计算模型研究

  • 殷文骏1.3,程怡豪1,宋春明1,2*,王明洋1,2,高飞1,2,文德生1
作者信息 +

Calculation model for a high-velocity projectile penetrating a ceramiccomposite target

  • YIN Wenjun1,3, CHENG Yihao1, SONG Chunming1,2, WANG Mingyang1,2, #br# GAO Fei1,2, WEN Desheng1#br# 
Author information +
文章历史 +

摘要

针对平头弹高速撞击陶瓷复合厚靶的问题,以集中质量法为基础并考虑靶体的内摩擦效应对Fellows模型加以改进,建立侵彻过程的理论计算模型并利用Matlab编程求得不同撞击速度下弹体侵彻复合靶体的侵彻深度,模型得到了试验结果和数值计算结果的验证。参数分析的结果表明,陶瓷厚度的增加可提高复合靶体的抗侵彻能力,但随着初始撞击速度的提高,弹体的侵彻深度增长曲线趋于平缓。

Abstract

Aiming at a flat-nosed projectile with high velocity impacting a ceramic composite target, the calculation model based on the lumped mass method was improved by considering target's internal friction effects. The theoretical computing model for the projectile's penetrating process was established and the algorithm was developed by using MATLAB to calculate the depth of the projectile's penetrating the ceramiccomposile target under different impact velocity. The results were compared with those of tests and those of numerical simulation with AUTODYN, they agreed well each other. Parametric analysis results showed that the anti-penetration ability of the composite target can be improved with increase in thickness of ceramic; the growth curve of the projectile penetration depth becomes flat with increase in initial impact velocity.

关键词

高速侵彻 / 陶瓷复合靶体 / 理论计算模型 / 数值模拟 / 参数分析

Key words

high-velocity impact / ceramic composite target / calculation model;numerical simulation;parameter analysis

引用本文

导出引用
殷文骏1.3,程怡豪1,宋春明1,2*,王明洋1,2,高飞1,2,文德生1. 弹体高速侵彻陶瓷复合厚靶的计算模型研究[J]. 振动与冲击, 2017, 36(1): 223-229
YIN Wenjun1,3, CHENG Yihao1, SONG Chunming1,2, WANG Mingyang1,2, . Calculation model for a high-velocity projectile penetrating a ceramiccomposite target[J]. Journal of Vibration and Shock, 2017, 36(1): 223-229

参考文献

[1]陈小伟, 陈裕泽. 脆性陶瓷靶高速侵彻/穿甲动力学的研究进展[J]. 力学进展, 2006, 36(1): 85-102.
CHENXiaowei, CHENYuze.Review on the penetration/perforation of ceramics targets[J]. Advances in mechanics, 2006, 36(1): 85-102.
[2] Wilkins ML, Honodel CA, Sawle D. An Approach to the Study of Light Armour. UCRL-50284: Lawrence Radiation Laboratory, 1967.
[3] Wilkins ML, Cline CF, Honodel CA. Fourth Progress Report of Light Armour Program. UCRL-50694: Lawrence Radiation Laboratory, 1969.
[4] Wilkins ML, Honodel CA, Landingham RL. Fifth Progress Report of Light Armour Program. UCRL-50980: Lawrence Radiation Laboratory, 1971.
[5] Landingham RL, Casey AW. Final Report of the Light Armor Materials Program. UCRL-51269: Lawrence Livermore Laboratory, 1972.
[6]Raymond L, Woodward. A simple one-dimensional approach to modelling ceramic composite armourdefeat[J]. Int J Impact Engng, 1990, 9(4): 455-474.
[7]N.A. Fellows, P.C. Barton. Development of impact model for ceramic-faced semi-infinite armour[J]. Int J Impact Engng,1999,22:793-811.
[8] F.I. Grace, N.I. Rupert. Analysis of long rods impacting ceramic targets at high velocity[J]. Int J Impact Engng,1997,20:281-292.
[9] den Reijer PC. Impact on ceramic faced armour. Ph.D. Thesis, Delft Technical University, The Netherlands, 1991.
[10] Bless SJ, Rosenberg Z, Yoon B. Hypervelocity penetration of ceramics. Int J Impact Engng,1987,5:165-177.
[11] M. J. Forrestal, B.S. Altman, J.D. Cargile, S.J. Hanchak. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. Int J Impact Engng, 1994, 4: 395-405.
[12] Steinberg D J. Equation of State and Strength Properties of Selected Materials [M]. Livermore; Lawrence Livermore National Laboratory, 1991.
[13] Anderson C E, Johnson G R, Holmquist T J. Ballistic experiments and computations of confined 99.5% Al2O3 ceramic tiles[C]. 15th International Symposium on Ballistic, Jerusalem, Israel:1995:65-72.
[14] Riedel, et al. Numerical assessment for impact strength[J].Int J Impact Engng, 2009, 36:283-290.
[15] D.R. Curran, L.Seaman, T.Cooper, D.A.Shockey. Micromechanical model for comminution and granular  flow of brittle material under high strain rate application to penetration of ceramic targets[J]. Int J Impact Engng, 1993, 13(1):53-83.
[16] Q.M.Li, S.R.Reid, H.M.Wen, A.R.Telford. Local impact effects of hard missiles on concrete targets[J]. Int J Impact Engng, 2005, 32:224-284.
[17] Johnson G R, Holmquist T J. Response of boron carbidesubjected to large strains, high strain rates, and high pressure[J]. J ApplPhys, 1999,85(12):851-870.
[18]Vaziri R, Delfosse D, Pageau G. High- speed impact responseof particulate metal matrix composite materials—An experimental and theoretical investigation[J]. Int J Impact Engng,1993, 13(2): 329- 352

PDF(1210 KB)

Accesses

Citation

Detail

段落导航
相关文章

/