流体引起的空调管路振动分析与实验研究

谭博欢1 舒宝2 李冬2 柳小勤1 伍星1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 261-267.

PDF(1606 KB)
PDF(1606 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 261-267.
论文

流体引起的空调管路振动分析与实验研究

  • 谭博欢1 舒宝2 李冬2 柳小勤1伍星1
作者信息 +

Analysis and test for fluid flow induced vibration of air conditioner pipes

  • TAN Bohuan1, SHU Bao2, LI Dong2, LIU Xiaoqin1, WU Xing1
Author information +
文章历史 +

摘要

结合流体动力学和结构动力学分析了空调室外机管路系统由流体引起的振动问题。采用有限元方法建立了管路系统的动力学模型,并通过模态试验验证了模型的准确性。使用流体动力学方法分析了管内流场,获得管道内壁的表面压力,并以压力作为激励,结合实验验证后的管路动力学模型进行了谐响应分析。通过管路ODS(Operational Deflection Shapes)实验,验证了由流体引起的管路振动分析方法的可靠性和有效性。研究表明:管路理论模态分析与实验结果基本吻合,确保建立的动力学模型的准确性,为后续分析的准确度提供了基础;管路振动分析与ODS实验对比结果在低频段理论与实验吻合较好,而在高频段误差较大。分析了误差产生的原因,为后续研究指明了方向。

Abstract

Pipes connecting compressor and heat exchange coils play an important role in noise and vibration control of air conditioners. The vibration of pipes caused by fluid flow was analyzed with fluid dynamics and structural dynamics. The accurate FE dynamic model of the pipe system was established and the correctness of the FE model was verified using modal analysis and tests. The pressures on the pipe surface were obtained with the fluid dynamic analysis. The excitations (the pressures) were combined with the FE model verified with tests to analyze harmonic vibration responses of the pipes. Then, the pipes operational deflection shapes (ODS) test was performed to verify the reliability and effectiveness of the analysis method for fluid flow induced vibration of pipes of air conditioner. The results showed that the results of the pipe systems theoretical modal analysis agree well with those of tests to ensure the correctness of the FE dynamic model and to lay a foundation for further analysis; the theoretical analysis results of the pipe system vibration agree better with the results of its ODS test in lower frequency range, but there are larger errors in higher frequency range. The reasons to cause errors were analyzed, they provided a reference for further study.

关键词

空调  / 管道振动  / 模态分析 流体激励  / ODS

Key words

air conditioning / pipe vibration / modal analysis / flow excitation / ODS

引用本文

导出引用
谭博欢1 舒宝2 李冬2 柳小勤1 伍星1. 流体引起的空调管路振动分析与实验研究[J]. 振动与冲击, 2017, 36(1): 261-267
TAN Bohuan1, SHU Bao2, LI Dong2, LIU Xiaoqin1, WU Xing1. Analysis and test for fluid flow induced vibration of air conditioner pipes[J]. Journal of Vibration and Shock, 2017, 36(1): 261-267

参考文献

[1] Ashley H, Haviland G. Bending vibrations of a pipeline containing flowing fluid[J]. Journal of Applied Mechanics, 1950,17:229-232
[2] Paidoussis M P. Flow-induced instabilities of cylindrical structures [J]. Applied Mechanics Reviews, 1987, 40:163-175.
[3] Paidoussis M P, Li G X. Pipes conveying fluid: a model dynamical problems[J]. Journal of Fluid and Structures, 1993,7:137-204.
[4] Paidoussis M P. Fluid-Structure Interactions[M], Vol 1: Slender Structures and Axial Flow. San Diego, CA: Academic Press lnc,1998:196-275.
[5] Hairahayashi,Kazuhiro S. Measurement of vibration Energy-Flow in piping system of Air-Conditioner, Technical Review-Mitsubishi Heavy Industries,1988,25(3).
[6] Okutsu N,Study on the Vibration and Stress of Copper Tubes in Refrigerators and Air Conditioners, Transactions of the Japan Society of Mechanical Engineers,Part C,1997,63(611),2201-2205.
[7] Ahmadi A, Keramat A. Investigation of fluid-structure interaction with various types of junction coupling[J]. Journal of Fluids and Structures,2010,26(7-8):1123-1141.
[8] 段传学. 空调管路系统振动建模与分析[D]. 上海:上海交通大学,2006.
Duan Chuanxue. Dynamic modeling and analysis for air conditioner piping system[D]. Shanghai: Shanghai Jiao Tong University,2006.
[9] 郭亚娟,孟光. 基于近似模型的空调配管阻尼层优化设计[J].振动与冲击,2013,32(6):185-189.
GUO Ya-juan, MENG Guang. Optimization design of pipe’s damping layers in air conditioner based on approximation model[J]. Journal of Vibration and Shock,2013,32(6):185- 189
[10] 王雯,徐丽,傅卫平,孔祥剑,马玉山. 调节阀-管道-流体系统流固耦合动态特性研究[J]. 振动与冲击,2014,33(21):161-165.
WANG Wen, XU Li, FU Wei-ping, KONG Xiang-jian, MA Yu-shan. Dynamic characteristics of a control valve-pipeline-fluid system considering fluid-structure interaction. Journal of Vibration and Shock,2014,33(21): 161-165.
[11] 薛玮飞,张智,陈进,杨九铭,刘晓明. 空调配管空间结构的动态仿真与优化[J]. 机械强度,2011,33(2):170-174
XUE WeiFei, ZHANG Zhi, CHEN Jin, YANG JiuMing, LIU XaioMing. Dynamical Simulation and Optimum Design Used for Air Conditioner Pipe[J]. Journal of Mechanical Strength,2011,33(2):170-174
[12] 付永领,荆慧强. 弯管转角对液压管道振动特性影响分析[J]. 振动与冲击,2013,32(13):165-169
FU Yong-ling, JING Hui-qiang. Elbow angle effect on hydraulic pipeline vibration characteristics[J]. Journal of Vibration and Shock,2013,32(13):165-169
[13] 巨丽 李永堂.对击式液压锤理论与实验模态分析[J].机械工程学报,2009,45(1):273-276
JU Li, LI Yongtang. Theoretical and Testing Modal Analysis of Counterblow Hydraulic Hammer. Journal of Mechanical Engineering,2009,45(1):273-276
[14] SCHRAGE D S. Thermal modeling of NI-MH battery cells operating under transient orbital conditions[C]//Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, August 4-9, 1997. Boston, MA: American Nuclear Society, 1991:21-44.
[15] Peeters B, Auweraer Van Der H, Guillaume P, et al. The PolyMAX frequency-domain method: a new standard for modal parameter estimation[J]. Shock and Vibration, 2004, 11:395-409

PDF(1606 KB)

Accesses

Citation

Detail

段落导航
相关文章

/