基于POD降阶方法的复合材料曲壁板颤振响应特性研究

周建 1,杨智春 2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 38-44.

PDF(1951 KB)
PDF(1951 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 38-44.
论文

基于POD降阶方法的复合材料曲壁板颤振响应特性研究

  • 周建 1 , 杨智春 2
作者信息 +

Flutter response characteristics of composite curved panels based on POD method

  • ZHOU Jian1, YANG Zhichun2
Author information +
文章历史 +

摘要

本文建立了三维复合材料曲壁板的气动弹性有限元方程,将本征正交分解方法(POD)应用于三维复合材料曲壁板的非线性颤振响应降阶分析中,通过POD方法构造三维复合材料曲壁板颤振响应的POD模态,然后将系统的运动方程变换到POD模态坐标下,通过值积分方法计算三维复合材料曲壁板的颤振响应,与传统的模态缩减法计算结果相比,结果很好的吻合,且大大节省了计算时间。

Abstract

The equations of motion for nonlinear flutter of curved composite panels were developed with the finite element method. The reduced order modes constructed with the proper orthogonal decomposition (POD) method were used in reducing the order of these equations, and the equations of motion were transformed into a reduced nonlinear system under the POD modal coordinates, then the reduced equations were solved in time domain by using the numerical integration method. Compared with the results calculated using the traditional modal reduction method, the results using POD method based on reduced order models agreed well with the former, and also saved the computation time greatly.

关键词

曲壁板 / 壁板颤振 / 本征正交分解

Key words

curved panel / panel flutter / proper orthogonal decomposition

引用本文

导出引用
周建 1,杨智春 2. 基于POD降阶方法的复合材料曲壁板颤振响应特性研究[J]. 振动与冲击, 2017, 36(1): 38-44
ZHOU Jian1, YANG Zhichun2. Flutter response characteristics of composite curved panels based on POD method[J]. Journal of Vibration and Shock, 2017, 36(1): 38-44

参考文献

[1] Garrick IE, Reed Ⅲ WH. Historical Development of Aircraft Flutter[J]. Journal of Aircraft, 1981,18(11): 897-912.
[2] Ong CC. Flutter of a Heated Shield Panel [R]. NASA-CR-122855, BELLCOMM Inc. TM-71-1013-6, 1971.
[3] Zhou RC, Xue DY, Mei C. Finite Element Time Domain-Modal Formulation for Nonlinear Flutter of Composite Panels[J]. AIAA Journal, 1994,32(10): 2044-2052.
[4] Abdel-Motagaly K, Chen R, Mei C. Nonlinear Flutter of Composite Panels Under Yawed Supersonic Flow Using Finite Elements[J]. AIAA Journal, 1999,37(9):1025-1032.
[5] Abdel-Motagaly K, Duan B, Mei C. Active Control of Nonlinear Panel Flutter under Yawed Supersonic Flow[J]. AIAA Journal, 2005,43(3):671-680.
[6] Zhou RC, Mei C, Huang JK. Suppression of Nonlinear Panel Flutter at Supersonic Speeds and Elevated Temperatures[J]. AIAA Journal, 1996,34(2):347-354.
[7] Guo XY, Mei C. Application of Aeroelastic Modes on Nonlinear Supersonic Panel Flutter at Elevated Temperatures[J]. Computers and Structures, 2006(84): 1619-1628.
[8] Guo XY, Mei C. Using Aeroelastic Modes for Nonlinear Panel Flutter at Arbitrary Supersonic Yawed Angle[J]. AIAA Journal, 2003,41(2):272-279.
[9] Feeny BF, Kappagantu R. On the Physical Interpretation of Proper Orthogonal Modes in Vibrations[J]. Journal of Sound and Vibration, 1998,211(4):607-616.
[10] 于海, 陈予恕. 高维非线性动力学系统降维方法的若干进展[J]. 力学进展, 2009,39(2): 154-164.
Yu Hai, Chen Yushu. Recent Developments in Dimension Reduction Methods For High-Dimension Dynamical Systems[J]. Advances in Mechanics, 2009, 39(2): 154-164.
[11] 赵松原, 黄明恪. 模拟退火算法和POD降阶模态计算在翼型反设计中的应用[J]. 空气动力学报, 2007,25(2): 236-240.
Zhao Songyuan, Huang Mingke. Application of simulated annealing method and reduced order models based on POD to airfoil inverse design problems[J]. Acta Aerodynamic Sinica ,2007,25(2):236-240.
[12] 赵松原, 黄明恪. POD降阶算法中对基模态表达的改进[J]. 南京航空航天大学学报, 2006,38(2): 131-135.
Zhao Songyuan, Huang Mingke. Modification to Basic Modes of Reduced Order Model for Computing Airfoil Flow Field[J]. Journal of Nanjing Univesity of Aeronautics & Astronautics, 2006,38(2):131-135.
[13] Dan X, Min X, Dowell EH. Proper Orthogonal Decomposition Reduced-Order Model for Nonlinear Aeroelastic Oscillations[J]. AIAA Journal, 2014,52(2):229-241.
[14] Attat PJ, Dowell EH, White JR. Reduced Order Nonlinear System Identification methodology[J]. AIAA Journal, 2006,44(8):1895-1904.
[15] LeGresley PA, Alonso JJ. Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition[R]. AIAA-2000-2545,2000.
[16] Mortara SA, Slater J, Beran P. Analysis of Nonlinear Aeroelastic Panel Response Using Proper Orthogonal Decomposition[J]. Journal of Vibration and Acoustics, 2004,126(3):416-421.
[17] Epureanu BI, Tang LS, Paidoussis MP. Coherent Structures and Their Influence on the Dynamics of Aeroelastic Panels[J]. International Journal of Non-Linear Mechanics, 2004(39):977-991.
[18] Lucia DJ, Beran PS, King PI. Reduced Order Modeling of an Elastic Panel in Transonic Flow[R]. AIAA-2002-1594,2002.
[19] Tessler A, Hughes TJR. A Three-node Mindlin Plate Element with Improved Transverse Shear[J]. Computer Methods in Applied Mechanics and Engineering, 1985,50(1):71-101.
[20] Azzouz MS, Przekop A, Guo XY, Mei C. Nonlinear Flutter of Shallow Shell Under Yawed Supersonic Flow Using FEM[R]. AIAA-2003-1516,2003.

PDF(1951 KB)

Accesses

Citation

Detail

段落导航
相关文章

/