建立了爆炸荷载作用下方形中空夹层钢管超高性能钢纤维混凝土(Ultra-High Performance Steel Fiber Reinforced Concrete Filled Double Skin Steel Tube, UHPSFRCFDST)柱动态响应及其损伤破坏三维有限元数值模型。首先通过模拟结果与爆炸破坏试验结果的对比分析,验证了数值模型和计算方法的有效性。进而运用参数化分析方法,研究了空心率、含钢率、内、外层钢管厚度及其强度等关键参数对UHPSFRCFDST柱抗爆性能的影响。研究结果表明,UHPSFRCFDST柱具有优越的抗爆性能,所建立的三维有限元模型能够有效地分析UHPSFRCFDST柱在爆炸荷载作用下的动态响应及其损伤破坏;在一定范围内减小空心率及提高外层钢管强度可有效提升UHPSFRCFDST柱抗爆性能; 提高含钢率、减小内、外层钢管高厚比均能够显著提升UHPSFRCDST柱抗爆性能;内层钢管强度对UHPSFRCFDST柱的抗爆性能影响并不明显。
Abstract
A 3D FE model was developed to analyze dynamic response and damage mechanism of a UHPSFRCFDST(Ultra-High Performance Steel Fiber Reinforced Concrete Filled Double Skin Steel Tube)column under blast loading, they were validated through comparison of simulated results and blast testing ones of the UHPSFRCFDST column. The effects of main variables including hollow ratios, steel ratios, and thicknesses and strengths of inner steel tube and outer steel one on the blast resistant performance of the UHPSFRCFDST column were investigated by utilizing the 3D FE model. The results indicated that the UHPSFRCFDST column has excellent antiblast performances, and the proposed 3D FEM model can be used to analyze the dynamic response of the UHPSFRCFDST column under blast loading efficiently; reducing hollow ratio and increasing strength of outer steel tube in certain ranges can enhance effectively the blast resistant performance of the UHPSFRCFDST column; increasing steel ratio and reducing height to thickness ratios of inner and outer steel tubes can significantly improve the blast resistant performance of the UHPSFRCFDST column; the strength of inner steel tube has a little effect on the blast resistant performance of the UHPSFRCFDST column, but increasing the strength of outer steel tube in a certain range can improve the blast resistant performance of the UHPSFRCFDST column significantly.
关键词
中空夹层钢管超高性能钢纤维混凝土柱 /
爆炸荷载 /
动态响应 /
破坏模式 /
有限元模型
{{custom_keyword}} /
Key words
ultra-high performance steel fiber reinforced concrete filled double skin steel tube colums /
blast loading /
dynamic response /
damage model /
finite element method model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钟善桐. 钢管混凝土结构[M]. 北京:清华大学出版社,2003.
ZHONG Shan-tong. The Concrete-filled steel tubular structures [M]. Beijing: Tsinghua University Press, 2003.
[2] 蔡绍怀. 现代钢管混凝土结构[M]. 北京:人民交通出版社,2003.
CAI Shao-huai. Modern steel tube confined concrete structures [M]. Beijing: China Communications Press, 2003.
[3] 韩林海. 钢管混凝土结构-理论与实践[M].北京:科学出版社,2004.
HAN Lin-hai. Concrete-filled steel tube structure --- theory and practice [M]. Beijing: Science Press, 2004.
[4] 黄宏.中空夹层钢管混凝土压弯构件的力学性能研究[D].福州:福州大学土木工程学院, 2006.
HUANG Hong. Behavior of concrete filled double-skin steel tubular beam-columns [D]. Fu Zhou:School of Civil Engineering, Fou Zhou University, 2006.
[5] Habel K., Gauvreau P.. Response of ultra-high performance fiber reinforced concrete (UHPFRC) impact and static loading [J]. Cement and Concrete Composites, 2008, 30(10):938-946.
[6] 巫绪涛.钢纤维高强混凝土动态力学性质的研究[D].合肥:中国科学技术大学力学和机械工程系,2006.
WU Xu-tao. Study on dynamic properties of steel fiber reinforced high strength concrete [D]. He Fei: Department of Mechnaics and Mechanical Engineering, University Of Science And Technology of China, 2006.
[7] Wu C., Oehlers D.J., Rebentrost M., et al. Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs [J]. Engineering Structures, 2009, 31(9): 2060-9.
[8] 孙珊珊.爆炸荷载下钢管混凝土柱抗爆性能研究[D].西安:长安大学土木工程学院,2013.
SUN Shan-shan. Investigation on dynamic response of CFST columns subjected to blast loading [D]. Xi An: School of Civil Engineering, Chang An University. 2013.
[9] 崔莹.爆炸荷载下复式空心钢管混凝土柱的动态响应及损伤评估[D].西安:长安大学土木工程学院,2013.
CUI Ying. Dynamic response and damage assessment of duplex hollow CFST column subjected to blast loading [D]. Xi An: School of Civil Engineering, Chang An University. 2013.
[10] 李国强,瞿海雁,杨涛春,陆勇,陈素文.钢管混凝土柱抗爆性能试验研究[J].建筑结构学报,2013,13(12):69-76.
LI Guo-qiang, DI Hai-yan, YANG Tao-chun, et al. Experimental study of concrete-filled steel tubular columns under blast loading [J]. Journal of Building Structures. 2013, 13(12):69-76.
[11] Fangrui Zhang, Chengqing Wu, Hongwei Wang, Yun Zhou. Numerical simulation of concrete filled steel tube columns against BLAST loads [J]. Thin-Walled Structures, 2015, 92:82-92.
[12] Jama H. H., Bambach M.R., Nurick G. N, et al. Numerical modeling of square tubular steel beams subjected to transverse blast loads [J]. Thin-Walled Structures, 2009, 47(12):1523-1534.
[13] Livermore Software Technology Corporation. LS-DYNA Uer’s Manual [M].2015.
[14] Livermore Software Technology Corporation. LS-DYNA Theoretical Manual [M].2015.
[15] 李忠献,师燕超,史祥生.爆炸荷载作用下钢筋混凝土板破坏评定方法[J].建筑结构学报,2009,6:60-66.
LI Zhong-xian, SHI Yan-chao, SHI Xiang-sheng. Damage analysis and assessment of RC slabs under blast load [J]. Journal of Building Structures. 2009, 6:60-66.
[16] 师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报,2008,04:112-117.
SHI Yan-chao, LI Zhong-xian. Dynamic response and failure modes of RC columns under blast loading [J]. Journal of Building Structures. 2008, 4:112-117.
[17] Bauschinger J.. On the change of position of the elastic limit of iron and steel under cyclic variations of stress [J]. Mitt Mech Tech Lab Mü nchen, 1886, 13:1-115.
[18] Malvar L.J., Crawford J.E., Wesevich J.W., et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9): 847-73.
[19] Tu Z., Lu Y.. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132-46.
[20] Mao L, Barnett S, Begg D, et al. Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading[J]. International Journal of Impact Engineering, 2014, 64: 91-100.
[21] Malvar L.J., Crawford J.E. M. K.. K&C concrete material model release III-automated generation of material model input [J]. K&C Technical Report TR-99-24-B1, 2009.
[22] Ngo T, Mendis P, Krauthammer T. Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading[J]. Journal of Structural Engineering, 2007, 133(11): 1582-1590.
[23] Isaacs J, Magallanes J, Rebentrost M, et al. Exploratory dynamic material characterization tests on ultra-high performance fibre reinforced concrete[C]//Proceedings of 8th International Conference on Shock and Impact Loads on Structures, Adelaide, Australia. 2009.
[24] American Society of Civil Engineering. CEB-FIP Model Code: 1990 [M]. 1993.
[25] UFC-3-340-02. Structures to resist the effect of accidental explosions [J].US Department of the Army, Navy and Air Force Technical Manual, 2014.
[26] Wang F. W. Y., Chong Q.Y.K., Lim C.H.. Reinforced concrete slab subjected to close-in explosion. [J]. The second international workshop on performance procection and strengthening of structure under extreme loading, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}