刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟

宫俊1, 吴昊1, 方秦1, 张锦华1, 刘建忠2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 55-63.

PDF(2302 KB)
PDF(2302 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (1) : 55-63.
论文

刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟

  • 宫俊1, 吴昊1, 方秦1, 张锦华1, 刘建忠2
作者信息 +

Test and mesoscale numerical simulation for corundumaggregate ultra-high performance cementitious composites against projectile penetration

  • GONG Jun1, WU Hao1, FANG Qin1, ZHANG Jinhua1, LIU Jianzhong2
Author information +
文章历史 +

摘要

混凝土抗钻地武器侵彻能力由基体强度和骨料硬度与粒径共同控制。为了研发具备更高抗侵彻能力的混凝土材料,利用刚玉超高强高硬的特点,将刚玉碎石作为粗骨料,制备出刚玉骨料超高性能水泥基材料(CA-UHPCC)。开展了不同骨料粒径(5~20mm、35~45mm、65~75mm)的CA-UHPCC以及高强混凝土(HSC)靶体的中等口径弹体侵彻试验。通过与前期完成的玄武岩骨料超高性能水泥基(BA-UHPCC)靶体的弹体侵彻试验进行对比,验证了CA-UHPCC较BA-UHPCC和HSC具备更加优异的抗侵彻性能。进一步建立了考虑粗骨料形状随机生成和空间位置随机分布以及粗骨料/砂浆界面层的混凝土三维细观模型,对弹体冲击速度,骨料类型和体积率对混凝土靶体抗侵彻性能的影响进行了细观数值模拟。结果表明,靶体抗侵彻能力随着骨料强(硬)度,粒径和体积率的增大而提高,高强(硬)度和大粒径(大于1.5倍弹径)粗骨料可引起弹体磨蚀和断裂。

Abstract

The anti-penetration capability of concrete material is mainly dependent on its compressive strength and diameter and strength (hardness) of coarse aggregate. To develop a new type of concrete material being able to resist more intensive projectile impact loading, corundum pebbles with ultra-high strength and hardness were added, and corundumaggregate ultrahigh performance cementitious composites (CA-UHPCC) were prepared. The medium caliber projectile penetrating tests on CA-UHPCC with different coarse aggregate sizes (5~20mm, 35~45mm, 65~75mm) and high strength concrete (HSC) targets were conducted, and the test results were compared with the previous ones of basaltaggregate ultrahigh performance cementitious composites (BA-UHPCC) projectile penetrating tests. The higher anti-penetration capacity of CA-UHPCC than those of BA-UHPCC and HSC was validated. Furthermore, the 3D mesoscale finite element model of concrete considering random aggregate shapes and random spatial positions distribution as well as coarse aggregate/mortar interfacial transition zone was established. The numerical simulation of projectile impacts was conducted, and the effects of projectile velocity, coarse aggregate type and volumetric ratio on the anti-penetration capacity of concrete targets were analyzed. The results showed that the capacity of concrete targets against projectile penetration increases with increase in coarse aggregate strength (hardness), size and volumetric ratio; high strength (hardness) and large size (larger than 1.5 projectile diameter) coarse aggregate can cause abrasion and break of projectiles.

关键词

超高性能水泥基材料 / 刚玉 / 侵彻 / 细观模型 / 数值模拟

Key words

ultra-high performance cementitious composites / corundum / penetration / mesoscale model / numerical simulation

引用本文

导出引用
宫俊1, 吴昊1, 方秦1, 张锦华1, 刘建忠2. 刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟[J]. 振动与冲击, 2017, 36(1): 55-63
GONG Jun1, WU Hao1, FANG Qin1, ZHANG Jinhua1, LIU Jianzhong2. Test and mesoscale numerical simulation for corundumaggregate ultra-high performance cementitious composites against projectile penetration[J]. Journal of Vibration and Shock, 2017, 36(1): 55-63

参考文献

[1] Zhang M H, Shim V P W, Lu G, Chew C W. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825-841.
[2] Dancygier A N, Yankelevsky D Z, Haegermann C. Response of high performance concrete plates to impact of non- deforming projectiles [J]. International Journal of Impact Engineering, 2007, 34(11): 1768-1779.
[3] Bludau C, Keuser M, Kustermann A. Perforation resistance of high-strength concrete panels [J]. ACI Structure Journal, 2006, 103(2): 188-195.
[4] Fang Q, Zhang J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118-128
[5] Wu H, Chen X W, He L L, Fang Q. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target Part I: Engineering model for the mass loss and nose-blunting of the ogive-nosed projectile [J]. Acta Mechanica Sinica, 2014, 30(6): 933-942.
[6] Graybeal B A. Compressive behavior of ultra-high- performance fiber-reinforced concrete [J]. ACI Materials Journal, 2007, 104(2): 146-152.
[7] Máca P, Sovják R, Vavřinik T. Experimental investigation of mechanical properties of UHPFRC [J]. Procedia Engineering, 2013, 65: 14-19.
[8] Wille K, El-Tawil S, Naaman A E. Properties of strain hardening ultra-high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading [J]. Cement Concrete Comp, 2014, 48: 53-66.
[9] Habel K, Gauvreau P. Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading [J]. Cement and Concrete Composites, 2008, 30(10): 938-946.
[10] Farnam Y, Mohammadi S, Shekarchi M. Experimental and numerical investigations of low velocity impact behavior of high-performance fiber-reinforced cement based composite [J]. International Journal of Impact Engineering, 2010, 37(2): 220-229.
[11] 方秦, 罗曼, 张锦华, 孙志远. 弹体侵彻刚玉块石混凝土复合靶体的数值分析 [J]. 爆炸与冲击, 2015, 35(4): 489-495.
Fang Q, Luo M, Zhang J H, Sun Z Y. Numerical analysis of the projectile penetration into the target of corundum-rubble concrete composite overlay [J]. Explosion and Shock Waves, 2015, 35(4): 489-495.
[12] 唐耀振. 刚玉冶炼工艺学 [M] 北京: 国家机械委机床工具工业局, 中国磨料模具工业公司, 1987: 8-10.
Tang Y Z. Corundum smelting technology [M]. Beijing: National Machinery Committee Machine Tool Industry Development Bureau, Abrasive mold industrial company of China, 1987: 8-10.
[13] 唐德高, 贺虎成, 陈向欣等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37-39.
Tang D G, He H C, Chen X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37-39.
[14] 周布奎, 周早生, 唐德高等. 刚玉块石粒径对刚玉块石砼抗侵彻性能影响的试验研究 [J]. 爆炸与冲击, 2004, 24(4): 370-375.
Zhou B K, Zhou Z S, Tang D G, et al. The experimental study of nubbly corundum’s size affection to characteristics of anti-penetration of nubbly corundum concrete [J]. Explosion and Shock Waves, 2004, 24(4): 370-375.
[15] Wu H, Fang Q, Chen X W, Gong Z M, Liu J Z. Projectile penetration of ultra-high performance cement based composites at 510m/s to 1320m/s [J]. Construction Building Materials. 2015, 74(15): 188-200.
[16] Langberg H, Markeset G. High performance concrete- penetration resistance and material development. Proceedings of the Ninth International Symposium on Interaction of the Effects of Munitions with Structures, Berlin-Strausberg, 1999, 933-941.
[17] Sovják R, Vavřiník T, Zatloukal J, et al. Resistance of slim UHPFRC targets to projectile impact using in-service bullets [J]. International Journal of Impact Engineering, 2015, 76: 166-177.
[18] Máca P, Sovják R, Konvalinka P. Mix design of UHPFRC and its response to projectile impact [J]. International Journal of Impact Engineering, 2014, 63: 158-163.
[19] 方秦, 张锦华, 陈力, 张亚栋. 全级配混凝土三维细观模型的建模方法研究 [J]. 工程力学, 2013, 30(1): 14-21.
Fang Q, Zhang J H, Chen L, et al. The investigation into three-dimensional mesoscale modeling of fully-graded concrete engineering mechanics [J], 2012, 30(1): 14-21.
[20] G R Johnson. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[21] 王庭辉, 宋顺成. Grüneisen状态方程的数值解及其应用 [J]. 计算物理. 2007, 3(6): 361-366.
Wang T H, Song S C. Numerical study of Grüneisen state equation and applications [J]. Chinese Journal of Computational Physics, 2007, 3(6): 361-366.
[22] Holomquist T J, Johnson G R, Cook W H. A computationnal constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C], 14th International Symposium on Ballistics Quebec, Canada,1993: 591-600.
[23] 张锦华, 方秦, 龚自明, 陈力. 基于细观力学的全级配混凝土静态力学性能的数值模拟 [J]. 计算力学学报, 2012, 29(6): 927-933.
Zhang J H, Fang Q, Gong Z M, Chen L. Numerical simulation of static mechanical properties based on 3D mesoscale model of fully-graded concrete [J]. Chinese Journal of Computational Mechanics, 2012, 29(6): 927-933.
[24] Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials [J]. High pressure Science and Technology, 1994, 309(1): 981-984.
[25] 王政, 楼建锋, 勇珩, 梁龙河. 岩石、混凝土和土抗侵彻能力数值计算与分析 [J]. 高压物理学报, 2010, 24(3): 175-180.
Wang Z, Lou J F, Yong H, et al. Numerical computation and analysis on anti-penetration capability of rock, concrete and soil [J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 175-180.
[26] 方秦, 孔祥振, 吴昊, 龚自明. 岩石HOLMQUIT- JOHNSON-COOK模型参数的确定方法 [J]. 工程力学, 2013, 31(3): 197-204.
Fang Q, Kong X Z, Wu H, et al. Determination of HOLMQUIT-JOHNSON-COOK constitutive model parameters of rock [J]. Engineering Mechanics, 2013, 31(3): 197-204.

PDF(2302 KB)

586

Accesses

0

Citation

Detail

段落导航
相关文章

/