基于改进SDRE非线性鲁棒控制的二元机翼颤振抑制

苟义勇,李洪波,董新民,杨任农,左仁伟

振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 149-153.

PDF(998 KB)
PDF(998 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 149-153.
论文

基于改进SDRE非线性鲁棒控制的二元机翼颤振抑制

  • 苟义勇,李洪波,董新民,杨任农,左仁伟
作者信息 +

Active flutter suppression for two-dimensional airfoil based on improved SDRE nonlinear robust control

  • GOU Yi-yong, LI Hong-bo, DONG Xin-min, YANG Ren-nong ,ZUO Ren-wei
Author information +
文章历史 +

摘要

为有效抑制二元机翼颤振现象,采用Lyapunov稳定性理论设计了一种改进状态相关黎卡提方程(SDRE)的非线性鲁棒控制律。首先将含前/后缘双控制面的二元机翼模型以状态空间形式描述,然后将该模型转化成输入矩阵 为行满秩的形式,进而解决了基于SDRE的非线性控制方法不能直接应用于二元机翼颤振主动抑制的问题。仿真结果表明:在阵风干扰和控制面存在偏转角限制的情况下,闭环系统能快速达到稳定状态,颤振现象得到有效抑制。通过调节权重矩阵 和 ,能够减小控制输入幅值。

Abstract

In order to achieve active flutter suppression of a two-dimensional airfoil, an improved state-dependent Riccati equation (SDRE) nonlinear robust control law is proposed based on Lyapunov stability theory. The model of a two-dimensional airfoil with leading- and trailing-edge control surfaces are described in state space, and then this model is transformed into a form which input matrix   is full row rank matrix. The problem that SDRE nonlinear control method can’t be directly applied to active flutter suppression is solved. The simulation results are presented, which show the closed-loop system reaches to stability quickly under the impact of wind gust even if there is a hard constraint on the control input and flutter suppression is accomplished effectively. In addition, adjusting the weighting parameters   and  can decrease control inputs. 
 

关键词

二元机翼 / 非线性鲁棒控制 / 颤振 / 状态相关黎卡提方程

Key words

two-dimensional airfoil / nonlinear robust control / flutter / state-dependent Riccati equation

引用本文

导出引用
苟义勇,李洪波,董新民,杨任农,左仁伟. 基于改进SDRE非线性鲁棒控制的二元机翼颤振抑制[J]. 振动与冲击, 2017, 36(10): 149-153
GOU Yi-yong, LI Hong-bo, DONG Xin-min,YANG Ren-nong,ZUO Ren-wei. Active flutter suppression for two-dimensional airfoil based on improved SDRE nonlinear robust control[J]. Journal of Vibration and Shock, 2017, 36(10): 149-153

参考文献

[1] Mukhopadhyay V. Historical perspective on analysis and control of aeroelastic responses[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 673–684.
[2] Xiang J W, YanY J, LiDaochun. Recent advance in nonlinear aeroelastic analysis and control of the aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1): 12-22.
[3] O’Neil T, Strganac T W. Aeroelastic response of a rigid wing supported by nonlinear springs[J]. Journal of Aircraft, 1998, 35(4): 616-622.
[4] M Cassaro, M Battipede, PMarzocca, A.Behal. Comparison of adaptive control architectures for flutter suppression[J].Journal of Guidance, Control, and Dynamics, 2015, 38(2): 346-354.
[5] SahjendraN.Singh, WoosoonYim. State feedback control of an aeroelastic system with structural nonlinearity[J]. Aerospace Science and Technology, 2003, 7, 23-31.
[6] M. Tadi, State-dependent Riccati equation for control of aeroelastic flutter[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(6): 914-917
[7] Platanitis G, Strganac T W. Suppression of control reversal using leading- and trailing-edge control surfaces[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 452-460.
[8] Platanitis G., Strganac T W. Control of a nonlinear wing section using leading- and trailing-edge surfaces[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 52–58.
[9] Lee K W, Singh S N. Control of a wing section using leading-and trailing-edge flaps by L1 adaptive feedback despite disturbances[C]. //51st AIAA Aerospace Sciences Meeting and Exhibit, 2013: 2013-1111.
[10] Wang Z, Behal A, Marzocca P. Model-free control design for Multi-Input Multi-Output aeroelastic system subject to external disturbance[J] Journal of Guidance, Control, and Dynamics, 2011, 34(2): 446–458.
[11] Kelly D, Hammett. Control of nonlinear systems Via the state feedback state-dependen Riccati equation techniques[D]. Edmond: engineering of the air force institute of technology air university , 1997
[12] Mori T, Derese A. A brief summary of the bounds on the solution of the algebraic matrix equations in control theory. Iternationl Journal of Control[J], 1984, 39(2):247-256.
[13] Ridgely D B, Banda S S. Introduction to Robust Multivariable Control[D]. AFWAL-TR-85-3102, USAF, 1986.

PDF(998 KB)

Accesses

Citation

Detail

段落导航
相关文章

/