多线谱振动噪声主动控制中误差传感器的优化配置

周刘彬1,刘记心1,杨铁军2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 175-181.

PDF(3137 KB)
PDF(3137 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 175-181.
论文

多线谱振动噪声主动控制中误差传感器的优化配置

  • 周刘彬1,刘记心1,杨铁军2
作者信息 +

Optimal allocation of error sensors in multi-curve spectrum active vibration and sound control

  • ZHOU liubin1  LIU jinxin1  YANG tiejun2
Author information +
文章历史 +

摘要

针对振动主动控制中的误差传感策略问题,改进了现有的传感器优化算法,求解过程采用整数编码和混合编码的遗传算法,在保证整体减振效果基本不变的前提下减少传感器数目并优化其位置,使整个控制系统的规模得到了降低。同时为了消除多通道主动控制时各通道之间的耦合作用,采用FxLMS算法,在浮筏到舱段振动传递途径中安装了4台液压作动器,误差信号同时作为每个作动器的反馈信号,结合提出的误差传感优化策略,对多个激励频率的主动隔振进行了详细的实验研究。实验结果表明,对舱段结构上优选出来的4个误差点进行有效控制后,舱段结构上22个误差点的全局减振效果基本不变,且10个监测用传声器的声压得到了有效的抑制。

Abstract

Aiming at the optimization of sensors’ number and locations in active control of structural response, an existing optimization selection method was improved. The method can effectively reduce the number of sensors and find their relevant optimization locations, at the same time the effect of vibration reduction maintains almost the same as before, and the control scale of hardware can be reduced distinctly. The optimization procedure was resolved with the genetic algorithm. In order to eliminate the coupling between multi-channel in active control, FxLMS algorithm was used. Four hydraulic actuators were placed between the floating raft and the hull structure, and the error signals were used as feedback signals for each actuator simultaneously, while using the improved integer coding genetic algorithm, the experimental research of active vibration isolation of multiple excitation frequencies was studied. Experimental results show that the effect of vibration reduction of 4 error signals maintains almost the same as that of 22 error signals, sound pressure of the 10 monitoring microphones were effectively suppressed.
 

 

关键词

误差传感器 / 优化配置 / 主动隔振 / 声辐射 / 实验研究

Key words

error sensors / optimal allocation / active vibration isolation / sound radiations / experimental investigation

引用本文

导出引用
周刘彬1,刘记心1,杨铁军2. 多线谱振动噪声主动控制中误差传感器的优化配置[J]. 振动与冲击, 2017, 36(10): 175-181
ZHOU liubin1 LIU jinxin1 YANG tiejun2. Optimal allocation of error sensors in multi-curve spectrum active vibration and sound control[J]. Journal of Vibration and Shock, 2017, 36(10): 175-181

参考文献

[1]  Liu Z S, Wang D J, Hu H C. Measures of modal controllability and observability in vibration control of flexible structures [J]. Journal of Guidance, Control, and Dynamics. 1994,17(6):1377-1380P.
[2]  Xing G Q, Bainum P M. Actuator placement using degree of controllability for discrete-time systems [J]. Journal of Guidance, Control, and Dynamics. 1993,114:508-516P.
[3]  李俊宝,刘华,张令弥.自适应拓架结构振动控制中主动构件的最优配置[J].航空学报.1996,17(5):755-759页.
    Li Junbao, Liu Hua, Zhang Lingmi. Optimal placement of avtive members in active vibration control of adaptive truss structuress [J]. Acat aeronautica et astronatutica sinica. 1996, 17(5):755-759P.
[4]  Chen G S, Bruno R J, Salama M. Optimal placement of active/passive members in truss structures using simulated annealing [J]. AIAA Journal. 1991, 29(8):1327-1334P.
[5]  Sunar M, Rao S S. Thermo piezoelectric control design and actuator plaeement [J]. AIAA Journal.1997,35(2):534-539P.
[6]  Matunaga S, Onoda J. Actuator placement with failure consideration for static shape control of truss structures [J]. AIAA Journal. 1995,33(6): 1161-1163P.
[7]  Jalihal P J, Utku S, Wada B K. Actuator placement in prestressed adaptive trusses for vibration control [C]. In: Sierakowski. R Led. Proeeedings of SDM conference. AIAA-93-1694-cP.1993. 3312-3318P.
[8]  Ryou J K, Park K Y, Kim S J. Electrode pattern design of piezoelectric sensors and actuators using genetie algorithms [J]. AIAA Journal. 1998, 36(2):227-233P.
[9]  Sepulveda A E, Jin I M, Schmit J L. Optimal placement of active elements in control augmented structural synthesis [J]. AIAA Journal. 1993, 31(10): 1906-1915P.
[10] Sunar M, Rao S S. Thermo piezoelectric control design and actuator placement [J]. AIAA Journal, 1997, 35(2):534 -539P.
[11] Tolson R H and Huang J K. Integrated control of thermally distorted large space antennas [J]. Journal of Guidance Control and Dynamics. 1992.15(3): 605-614P.
[12] 刘福强,张令弥.作动器与传感器优化配置的逐步消减法.宇航学报[J].2000, 21(3): 64-69页.
    Liu Fuqiang, Zhang Lingmi. Successive method for optimal placement of actuators and sensors [J]. Journal of astronautics. 2000, 21(3):64-69P.
[13] Haflcta R T, Adelman H M. Selection of actuator locations for static shape control of large space structures by heuristic integer programming [J]. Computers and Structures. 1985, 20(3): 575-582P.
[14] Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing [J]. Science.1983,220:671-680P.
[15] 刘福强,张令弥.遗传算法在主动构件优化配置中的应用[J].振动与冲击.1999, 18(4):16-21页.
    Liu Fuqiang, Zhang Lingmi. optmal placement of active members via genetic algorithm [J]. Journal of vibration and shock. 1999, 18(4):16-21P.
[16] Li Q S, Liu D K, Tang J, Zhang N, Tam C M. Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms [J]. Journal of Sound and Vibration. 2004,270: 611-624P.
[17] Colornia A, Dorigo M, Maniezzo V. An investigation of Some Properties of an Ant Algorithm [C]. Proceeding of the Parallel Problem Solving from Nature Conference (PPSN. 92).Brussels, Belgium, Elsevier Publishing, 1992:509 -520P.
[18] Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proceeding of IEEE International Conference on Neural Networks. Perth, WA, Australia, 1995:1942-1948P.
[19] 刘福强,张令弥.作动器/传感器优化配置的研究进展.力学进展[J].2000, 30(4): 506-516页.
    Liu Fuqiang, Zhang Lingmi. Advances in optimal placement of actuators and sensors [J]. Advances in mechanics. 2000, 30(4): 506-516P.
[20] 任建亭,闫云聚,姜节胜.振动控制传感器/作动器的数目和位置优化设计[J].振动工程学报.2001,14(2):237-241页.
    Ren Jianting, Yan Yunju, Jiang Jiesheng. Optimal design method for sensors/actuators placement and numbers in the vibration control of flexible structure system [J]. Journal of vibration engineering. 2001,14(2):237-241P.
[21] 张宪民,邵长健,沈允文.弹性连杆机构振动主动控制中作动器与传感器的位置优化[J].振动工程学报. 2001, 14(2): 211-214页.
    Zhang Xianmin, Shao Changjian, Shen yunwen. Optimal placement of sensors and actuators for vibration control of elastic linkage mechanisms [J]. Journal of vibration engineering. 2001, 14(2):211-214P.
[22] Kincaid R K, Padula S L.D-optimal designs for sensor and actuator locations [J]. Computers & Operations Research. 2002, 29:701–713P.
[23] 黄建平.梁结构振动复合主动控制方法研究[D]. 南京:南京航空航天大学.2005:15-45页.
    Huang Jianping. Hybrid active vibration control of beam [D]. Nanjing: Nanjing university of aeronautics and astronautics. 2005: 15-45 P.
[24] Liu W, Hou Z K, Demetriou M A. A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial H2 measures [C]. Mechanical Systems and Signal Processing.2006,20:881–895P.
[25] Güney M, Eşkinat E.Optimal actuator and sensor placement in flexible structures using closed-loop criteria [J]. Journal of Sound and Vibration. 2008,312:210–233P.
[26] 缑新科,崔明月.遗传模拟退火算法在传感器/作动器位置优化问题中的应用[J].自动控制与监测.2008(11):39-41页.
    Hou Xinke, Cui Mingyue. Application of genetic and simulated annealing algorithms in placement optimization of sensor/actuator [J]. Journal of automatic control and monitoring. 2008(11):39-41P.
[27] 陆洋,顾仲权,凌爱民.直升机结构响应主动控制中传感器优选问题研究[J].振动与冲击.2011,30(6):58-61,73页.
    Lu Yang, Gu Zhongquan, Ling Aimin. Optimization selection of sensors in active control of structural response for helicopter [J]. Journal of vibration and shock. 2011, 30(6): 58-61,73P.

PDF(3137 KB)

Accesses

Citation

Detail

段落导航
相关文章

/