考虑铅芯温度效应的橡胶支座参数影响分析

秦川1,刘文光 1,,何文福 1,杨巧荣 1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 182-189.

PDF(2272 KB)
PDF(2272 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 182-189.
论文

考虑铅芯温度效应的橡胶支座参数影响分析

  • 秦川1 ,刘文光 1,,何文福 1,杨巧荣 1
作者信息 +

Comparative Analysis of Lead Heating Effects on Lead Rubber Bearing Behaviours

  • Chuan Qin 1   Wenguang Liu1  Wenfu He 1   Qiaorong Yang 1
Author information +
文章历史 +

摘要

对铅芯橡胶支座试验中支座力学性能参数的不同确定方法进行比较,并考虑温度效应对支座铅芯屈服应力影响,采用修正双线性支座模型比较了考虑铅芯温度效应前后支座的累积塑性变形需求,在此基础上选用多条地震动实测记录分析铅芯温度效应对隔震支座力学性能和地震响应的影响,结果表明地震作用下铅芯随着塑性变形的累积和地震能量的耗散温度不断变化,三组不同场地波作用下铅芯屈服应力随着地震动输入的增大均呈现下降趋势,对于中硬土和基岩场地,铅芯屈服应力的国内规范取值较实际计算值偏小,导致支座位移响应的高估和支座剪力响应的低估,不能有效预测地震作用下隔震支座及结构真实地震响应。

Abstract

This paper presents a comparison of different evaluation approaches on lead rubber bearing (LRB) behaviors through horizontal shear tests. Compared to constant lead yield stress value, cumulative plastic deformation demands on LRBs arise obviously with lead core heating effects considered. Nonlinear response history analyses were performed to study lead core heating effects on LRB behaviors and seismic responses, using three sets of ground motions classified according to their site categories. The results demonstrate that lead yield stresses decrease apparently with seismic input level arises in all three motion sets, while plastic deformation cumulating and lead core temperature arising. It is also revealed that, for medium hard site and rock site, Chinese code value of lead core yield stress is less than seismic analysis values, which leads to overestimate of bearing displacement responses and underestimate of shear force responses, and accurate seismic responses could not be predicted using it.

关键词

铅芯橡胶支座 / 温度效应 / 屈服应力 / 隔震性能

Key words

 lead rubber bearing / heating effect / yield stress / isolation behaviors

引用本文

导出引用
秦川1,刘文光 1,,何文福 1,杨巧荣 1. 考虑铅芯温度效应的橡胶支座参数影响分析[J]. 振动与冲击, 2017, 36(10): 182-189
Chuan Qin 1 Wenguang Liu1 Wenfu He 1 Qiaorong Yang 1. Comparative Analysis of Lead Heating Effects on Lead Rubber Bearing Behaviours[J]. Journal of Vibration and Shock, 2017, 36(10): 182-189

参考文献

[1] 刘文光, 庄学真, 周福霖,等. 中国铅芯夹层橡胶隔震支座各种相关性能及长期性能研究[J]. 地震工程与工程振动, 2002, 22(1):114-120.
Liu Wen-guang, Zhuang Xue-zhen, Zhou Fu-lin, et al. Dependence and Durability Properties of Chinese Lead Plug Rubber Bearings[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1):114-120.
[2] Kalpakidis I V, Constantinou M C. Effects of Heating on the Behavior of Lead-Rubber Bearings. I: Theory[J]. Journal of Structural Engineering, 2009, 135(12):1440-1449.
[3] Thomas B. Material mechanical property behavior of maintenance-free rubber-metal bearings[J]. Material prue fung / Materials Testing, 1989, 31: 241-244.
[4] Nakano O, Taniguchi H, Nishi H. Effect of temperature on the dynamic behavior of base-isolated bearings[C]. Proceedings of the 24th Joint Meeting on Wind and Seismic Effects, American. Inst of Standards & Technology, 1992.
[5] 尹维祥. 叠层橡胶支座稳定性及其受低温环境的影响[D]. 兰州: 甘肃工业大学, 2001.
Yin Wei-xiang. The stability of laminated rubber bearing and affected by low temperature environment[D]. Lan Zhou: Gansu Industrial University, 2001.
[6] 李慧, 邓学晶, 杜永峰,等. 寒区叠层橡胶隔震支座拟静力试验研究[J]. 低温建筑技术, 2003(4):33-35.
Li Hui, Deng Xue-jing, Du Yong-feng, et al. Pseudo static experimental study of rubber isolator under low temperature[J]. Low Temperature Architecture Technology, 2003(4): 33-35.
[7] 刘文光, 庄学真, 周福霖,等. 中国铅芯夹层橡胶隔震支座各种相关性能及长期性能研究[J]. 地震工程与工程振动, 2002, 22(1):114-120.
Liu Wen-guang, Zhuang Xue-zhen, Zhou Fu-lin, et al. Dependence and durability properties of Chinese lead plug rubber bearings[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1): 114-120.
[8] 刘文光, 李峥嵘. 低硬度橡胶隔震支座各种相关性及老化徐变特性[J]. 地震工程与工程振动, 2002, 22(6):115-121.
Liu Wen-guang, Li Zheng-rong, Zhou Fu-lin, et al. Analysis of decoupling to multi-factor role of LRB resilience model[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(6): 115-121.
[9] 刘文光, 杨巧荣, 周福霖. 建筑用铅芯橡胶隔震支座温度性能研究[J]. 世界地震工程, 2003, 19(2):39-44.
Liu Wen-guang, Yang Qiao-rong, Zhou Fu-lin. Temperature properties of lead rubber bearings for building[J]. World Earthquake Engineering, 2003, 19(2): 39-44.
[10] 庄学真, 周福霖, 冯德民,等. 1200型大直径建筑叠层铅芯橡胶隔震支座性能研究[J]. 西安建筑科技大学学报:自然科学版, 2008, 40(3):368-375.
Zhuang Xue-zhen, Zhou Fu-lin, Feng De-min, et al. Research on mechanical characteristics of 1200 laminated lead steel-plate-laminated-rubber-bearing isolation bearings for building[J]. Journal of Xi’an University of Architecture & Technology: Natural Science Edition, 2008, 40(3): 368-375.
[11] 庄学真, 周福霖, 徐丽,等. 大直径建筑叠层橡胶隔震装置温度相关性及老化性能研究[J]. 西安建筑科技大学学报:自然科学版, 2009, 41(6):791-798.
Zhuang Xue-zhen, Zhou Fu-lin, Xu Li, et al. Research on temperature dependence and aging rigidity of lead steel-plate-laminated-rubber-bearing isolation bearings for building. Journal of Xi’an University of Architecture & Technology: Natural Science Edition, 2009, 41(6): 791-798.
[12] 庄学真, 周福霖, 沈朝勇,等. 600型建筑叠层橡胶隔震装置温度相关性及耐老化性能研究[J]. 北京工业大学学报, 2011(7):993-999.
Zhuang Xue-zhen, Zhou Fu-lin, Shen Chao-yong, et al. Research on temperature dependence and aging rigidity of 600 laminated steel-plate-laminated-rubber-bearing isolation bearings for building[J] Journal of Beijing University of Technology, 2011, 37(7):993-999.
[13] 胡紫东, 李黎, 聂肃非. 考虑温度相关性的LRB隔震桥梁地震响应分析[J]. 振动与冲击, 2011, 30(9):40-45.
Hu Zi-dong, Li Li, Nie Su-fei. Seismic response of isolated bridges considering temperature effect[J]. Journal of Vibration and Shock, 2011, 30(9): 40-45.
[14] 刘文光, 秦皇婷, 何文福,等. 极低温度下LRB力学性能及对高层结构地震响应的影响[J]. 振动与冲击, 2012, 31(13):85-90.
Liu Wen-guang, Qin Huang-ting, He Wen-fu, et al. Mechanical properties of LRB in low temperature state and its influence on earthquake response of high buildings[J]. Journal of Vibration and Shock, 2012, 31(13): 85-90.
[15] 石岩, 王东升, 孙治国,等. 隔震斜交连续梁桥地震反应及环境温度影响研究[J]. 振动与冲击, 2014(14):118-124.
Shi Yan, Wang Dong-sheng, Sun Zhi-guo, et al. Seismic effect of response of isolated continuous skew bridge and the ambient temperature on seismic behavior of bridge[J]. Journal of Vibration and Shock, 2014, 33(14): 118-124.
[16] Constantinou M, Whittaker A, Kalpakidis Y, et al. Performance of seismic isolation hardware under service and seismic loading(MCEER-07-0012)[R]. New York: Buffalo, 2007.
[17] Guide Specifications for Seismic Isolation Design[S]. 3rd Editon Washington, DC: American Association of State Highway and Transporation Officials, 2010.
[18] Kalpakidis I V, Constantinou M C. Effects of Heating on the Behavior of Lead-Rubber Bearings. II: Verification of Theory[J]. Journal of Structural Engineering, 2014, 135(12):1450-1461.
[19] Kalpakidis I V, Constantinou M C, Whittaker A S. Modeling strength degradation in lead-rubber bearing under earthquake shaking[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(13):1533-1549.
[20] Ozdemir G, Avsar O, Bayhan B. Change in response of bridges isolated with LRBs due to lead core heating[J]. Soil Dynamics & Earthquake Engineering, 2011, 31(7): 921-929.
[21] Ozdemir G, Dicleli M. Effect of lead core heating on the seismic performance of bridges isolated with LRB in near-fault zones[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 1989–2007.
[22] Ozdemir G. Lead core heating in lead rubber bearings subjected to bidirectional ground motion excitations in various soil types[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(2): 267-285.
[23] Ozdemir G. Formulations for Equivalent Linearization of LRBs in order to Incorporate Effect of Lead Core Heating[J]. Earthquake Spectra, 2014, 31(1): 317-337.
[24] GB 20688.1-2007. 橡胶支座 第1部分: 隔震橡胶支座试验方法[S]. 北京:中国标准出版社. 2007.
GB 20688.1-2007. Rubber bearings: Part 1: Seismic-protection isolators test methods[S]. Beijing: China Standard Press, 2007.
[25] GB 20688.3-2006. 橡胶支座 第3部分: 建筑隔震橡胶支座[S]. 北京:中国标准出版社. 2006.
GB 20688.3-2006. Rubber bearings: Part 3: Elastomeric seismic-protection isolators for buildings[S]. Beijing: China Standard Press, 2006.
[26] Constantinou M C, Tsopelas P, Kasalanati A, et al. Property modification factors for seismic isolation bearings(MCEER-99-0012)[R]. New York: Buffalo, 1999.
[27] 日本建筑学会著. 隔震结构设计[M].刘文光, 译. 北京: 地震出版社, 2006.
Architectural Society of Japan.Recommendation for the design of base isolated buildings[M]. Liu Wen-guang, Translation. Beijing: Seismological Press, 2006.
[28] McVitty W J, Constantinou M C. Property Modification Factors for Seismic Isolators: Design Guidance for Buildings(MCEER-15-0005)[R]. New York: Buffalo, 2015.
[29] Kalpakidis I V. Effects of heating and load history on the behavior of lead -rubber bearings[J]. Dissertations & Theses - Gradworks, 2008.
[30] GB 50011-2010. 建筑抗震设计规范[S]. 北京:中国建筑工业出版社. 2010.
GB 50011-2010. Code for seismic design of buildings[S], Beijing: China Architecture & Building Press 2010.

PDF(2272 KB)

Accesses

Citation

Detail

段落导航
相关文章

/