针对单个小直径薄壁球壳吸能能力有限的问题,提出了一种嵌套式薄壁球壳结构,并通过有限元软件模拟其在轴向冲击下的动态响应过程,分析了外球壳厚度、内球壳高度和内球壳厚度对结构在轴向冲击下力学性能和变形模式的影响;建立了以比吸能、冲击荷载峰值为吸能性能的评价指标,以外球壳厚度、内球壳高度和内球壳为试验变量的响应表面模型;基于响应表面模型,通过非支配遗传算法(NSGA-Ⅱ)对试验变量进行优化,提出了不同工况下结构几何参数选取方案。结果表明,结构几何参数对其吸能特性影响显著,建立的响应表面模型准确可靠,优化方法得到了有限元模拟验证,有利于工程实际应用。
Abstract
The energy absorption ability of a single small span thin-wall spherical shell is limited. A new nested thin-wall spherical shell structure is designed and the dynamic response under axial impact is simulated through the finite element software. The effect of the thickness of the outer spherical shell, the height of the inner spherical shell and the thickness of the inner spherical shell on mechanical properties and deformation modes under axial impact is also analyzed. Response surface model is established based on the evaluation index of specific energy absorption (SEA) and peak crush load(PCL), with the test variables of thickness of the outer spherical shell, height of the inner spherical shell and thickness of inner spherical shell. Based on the response surface model, the test variables are optimized with non-dominated sorting genetic algorithms (NSGA-Ⅱ). Under different working conditions, the selection of the geometry parameters is put forward. The results show that the geometrical parameters has significant effects on the energy absorption characteristics. The response surface model is accurate and reliable. And the optimization method which verified by finite element simulation is beneficial to engineering application.
关键词
吸能 /
嵌套式薄壁球壳 /
响应表面 /
遗传算法
{{custom_keyword}} /
Key words
Energy absorption /
Nested thin-wall spherical shell /
Response surface /
Genetic algorithm
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭东. 爆炸荷载作用下防护门的动态响应行为与反弹机理研究[D]. 清华大学, 2012.
Guo Dong. Under explosion loading door behavior and dynamic response of a rebound mechanism research [D]. Tsinghua university, 2012.
[2] 张威. 薄壁球壳结构的动力学行为与优化设计[D]. 太原理工大学, 2015.
Zhang Wei. Dynamic behavior of thin wall spherical shell structure and optimization design [D]. Taiyuan university of technology, 2015.
[3] Updike D P. On the Large Deformation of a Rigid-Plastic Spherical Shell Compressed by a Rigid Plate[J]. Journal of Manufacturing Science & Engineering, 1972, 94(3):949-955.
[4] Updike D P. Deformation of Rigid-Plastic Spherical Shells in Low Velocity Impact.[J]. Deformation of Rigid-Plastic Spherical Shells in Low Velocity Impact, 1970.
[5] Gupta N K, Sheriff N M, Velmurugan R. Experimental and theoretical studies on buckling of thin spherical shells under axial loads[J]. International Journal of Mechanical Sciences, 2008, 50(3):422–432.
[6] Gupta N K, Sheriff N M, Velmurugan R. Experimental and numerical investigations into collapse behaviour of thin spherical shells under drop hammer impact[J]. International Journal of Solids & Structures, 2007, 44(10):3136-3155.
[7] M. Shariati and H.R. Allahbakhsh. Numerical and Experimental Investigations on the Buckling of Steel Semi-Spherical Shells Under Various Loadings[J]. Steel Construction, 2010, 48(8):620-628.
[8]马春生, 杜汇良, 张金换,等. 薄壁扁球壳在撞击载荷下的动态响应和吸能特性研究[J]. 振动与冲击, 2007, 26(1):4-7.
Chun-sheng ma, good Du Hui, gold, etc. Thin shallow spherical shells in dynamic response under the impact load and energy absorption characteristics research [J]. Journal of vibration and shock, 2007, 26 (1):4-7.
[9] 张亚栋, 方秦, 李忠平,等. 某大型防护门结构计算分析[C]// 中国土木工程学会防护工程分会第五届理事会暨第九次学术会议. 2004.
Zhang Yadong, qin, zhong-ping li, et al. A large protective door structure calculation analysis [C] / / China civil engineering society protection engineering branch of the fifth council and ninth academic conference. 2004.
[10]Yin H, Wen G, Hou S, et al. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes[J]. Materials & Design, 2011, 32(8):4449-4460.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}