新型橡胶隔震支座临界行为理论模型研究

孙新阳,杨维国,王萌

振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 7-12.

PDF(2202 KB)
PDF(2202 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (10) : 7-12.
论文

新型橡胶隔震支座临界行为理论模型研究

  • 孙新阳,杨维国,王萌
作者信息 +

A new theoretical model of rubber bearings for simulating critical behavior

  • SUN Xin-yang, YANG Wei-guo, WANG Meng
Author information +
文章历史 +

摘要

橡胶隔震支座在地震作用下同时受到巨大轴力与剪切变形,易发生稳定性问题进入临界状态,现行设计方法及计算理论不能准确计算临界力及临界位移,严重威胁隔震结构安全。为此本文提出计算橡胶支座临界行为新型理论模型,根据支座进入临界状态时受力规律,以两层竖向弹簧模拟支座转动性能,非线性水平弹簧模拟剪切性能,建立力学模型对支座临界行为进行分析。通过与试验结果进行对比,表明建立的理论模型能够准确模拟橡胶支座的临界行为,解决了现存分析模型中需要依靠试验校正系数以及误差过大的问题,为隔震结构设计提供有力工具。

Abstract

Rubber seismic isolation bearings are subjected to large axial loads and lateral displacements at the same time during earthquakes, and they are prone to turn into critical state. The current design methods and calculation theories cannot calculate the critical forces and the corresponding displacements accurately, which poses a direct threat to the isolated structures. Therefore, a new theoretical model that could simulate the critical behavior of rubber bearings is proposed in this study. According to the mechanics regularity of bearings in critical state, the rotational behavior of rubber is represent by two groups of vertical springs, and the shear behavior is modeled by a nonlinear horizontal spring, a mechanical model is established to analyze the critical behavior of rubber bearings. By comparing with test curves, the results show that the model has the ability to simulate the critical behavior of rubber bearings with ideal accuracy. It could tackle the problems that need to rely on experimentally calibrated parameters or have considerable errors of existing models, and it is able to provide a powerful tool for isolated structures design.

关键词

橡胶支座 / 水平刚度 / 稳定性 / 临界力 / 力学模型 / 有限元分析

Key words

 rubber bearing / horizontal stiffness / stability / critical load / mechanical model / finite element analysis

引用本文

导出引用
孙新阳,杨维国,王萌. 新型橡胶隔震支座临界行为理论模型研究[J]. 振动与冲击, 2017, 36(10): 7-12
SUN Xin-yang, YANG Wei-guo, WANG Meng. A new theoretical model of rubber bearings for simulating critical behavior[J]. Journal of Vibration and Shock, 2017, 36(10): 7-12

参考文献

[1] 周锡元, 阎维明, 杨润林, 等. 建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002,23(2):2-12,26.
Zhou Xiyuan, Yan Weiming, Yang Runlin, et al. Seismic Base Isolation, Energy Dissipation and Vibration Control of Building Structures[J]. Journal of Building Structures,2002,23(2):2-12,26.
[2] 杜东升, 王曙光, 刘伟庆, 等.高层建筑组合隔震的设计方法及应用[J].东南大学学报(自然科学版),2010,40(5):1039-1046.
Du Dongsheng, Wang Shuguang, Liu Weiqing, et al. Design method and its application in hybrid base-isolation of high-rise buildings[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(5): 1039-1046.
[3] Warn G P, Whittaker A S, Constantinou M C. Vertical stiffness of elastomeric and lead–rubber seismic isolation bearings[J]. Journal of Structural Engineering, 2007, 133(9): 1227-1236.
[4] Weisman J, Warn G P. Stability of elastomeric and lead-rubber seismic isolation bearings[J]. Journal of Structural Engineering, 2011, 138(2): 215-223.
[5] Warn G P, Weisman J. Finite-Element and Experimental Investigation of the Post-Buckling Stability of an Elastomeric Seismic Isolation Bearing[C]//Structures Congress 2010. ASCE, 2010: 1452-1461.
[6] Nagarajaiah S, Ferrell K. Stability of elastomeric seismic isolation bearings[J]. Journal of Structural Engineering, 1999, 125(9): 946-954.
[7] Iizuka M. A macroscopic model for predicting large-deformation behaviors of laminated rubber bearings[J]. Engineering Structures, 2000, 22(4): 323-334.
[8] Han X, Kelleher C A, Warn G P, et al. Identification of the controlling mechanism for predicting critical loads in elastomeric bearings[J]. Journal of Structural Engineering, 2013, 139(12): 04013016.
[9] Han X, Warn G P. Mechanistic Model for Simulating Critical Behavior in Elastomeric Bearings[J]. Journal of Structural Engineering, 2014, 141(5): 04014140.
[10] Haringx J A. On highly compressive helical springs and rubber rods and their applications to free mountings—Parts I, II and TTT[J]. Philips Research Reports, 1948.
[11] Warn G P. The coupled horizontal-vertical response of elastomeric and lead-rubber seismic isolation bearings[D]. The State University of New York, 2006.
[12] Sanchez J, Masroor A, Mosqueda G, et al. Static and dynamic stability of elastomeric bearings for seismic protection of structures[J]. Journal of structural engineering, 2012.
[13] Cardone D, Perrone G. Critical load of slender elastomeric seismic isolators: An experimental perspective[J]. Engineering Structures, 2012, 40: 198-204.
[14] ABAQUS. Analysis user's manual I_V. Version 6.10 [M]. USA: ABAQUS, Inc., Dassault Systèmes; 2010.
[15] 孙新阳, 杨维国, 王萌, 等. 剪切变形下橡胶支座压缩刚度比分析研究[J]. 工程力学. (已投稿)
Sun Xinyang, Yang Weiguo, Wang Meng, et al. Compression stiffness ratio of rubber bearings under shear deformation[J]. Engineering Mechanics. (Submitted)
[16] Warn G P, Whittaker A S. A study of the coupled horizontal-vertical behavior of elastomeric and lead-rubber seismic isolation bearings[R]. Multidisciplinary Center for Earthquake Engineering Research, 2006.
[17] Isolators E S. Part 3: Applications for buildings [J]. Specifications, IS022762-2, 2010.
[18] GB20688.3-2006,橡胶支座第3部分: 建筑隔震橡胶支座[S]. 北京: 中国建筑工业出版社,2006.
GB20688.3-2006, Rubber bearings-Part3: Elastomeric seismic-protection isolators for buildings[S]. Beijing, China Architecture & Building Press, 2006. (in Chinese)
[19] 中华人民共和国建设部. GB50011-2010, 建筑抗震设计规范[S]. 北京. 中国建筑工业出版社, 2001
Ministry of Housing and Urban-Rural Development of  the People’s Republic of China. GB50011-2010, Code  for Seismic Design of Buildings [S]. Beijing, China  Architecture & Building Press, 2001. (in Chinese)
[20] Vemuru V S M, Nagarajaiah S, Masroor A, et al. Dynamic Lateral Stability of Elastomeric Seismic Isolation Bearings[J]. Journal of structural engineering, 2014, 140(8): A4014014.
[21] Constantinou M C, Kartoum A, Kelly J M. Analysis of compression of hollow circular elastomeric bearings[J]. Engineering Structures, 1992, 14(2): 103-111.

PDF(2202 KB)

Accesses

Citation

Detail

段落导航
相关文章

/