借鉴多道次渐进成形方法,提出一种膨胀式吸能新型顶杆。保持锥形顶杆最大直径不变,在锥形顶杆区域添加定径段,将一次高膨胀率的膨胀过程变成多次低膨胀率膨胀过程。以不同膨胀角下的锥形变形区数量和定径段长度为设计变量,有限行程下的能量吸收为目标,采用全因子试验设计方法,基于移动最小二乘法建立的近似模型,进行响应面法优化设计,得到不同角度下膨胀式吸能顶杆的最佳方案。结果表明,近似模型的拟合精度较高,采用该模型的优化方案可提高膨胀式吸能管的耐撞性能。优化的临界角度为20.782°,误差小于0.313°。
Abstract
A new kind conical mandrel of the expanding energy absorption device was proposed based on multistage incremental forming. The conical part of the mandrel was divided into several sections with the largest diameter of the mandrel unchanged. In this way, the expansion process of high expansion ratio turned into several expansion processes of low expansion ratio. Considering the number of deformation zone (n) and the length of sizing section(l) as variables, full factorial design was used to take sample at different expansion angles. Based on these samples, approximation model was built with moving least squares method (MLAM). Parameters optimization using adaptive response surface method (ARSM) was carried out to gain a higher energy absorption. The results show that the approximation model has high precision, the optimization design can improve the energy absorption of expanding tube. The critical expansion angle was 20.782°, the error was less than 0.313°.
关键词
膨胀吸能 /
膨胀角度 /
响应面法 /
优化设计
{{custom_keyword}} /
Key words
expanding energy absorption /
expansion angle /
adaptive response surface method /
optimization design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王学亮,姜晓东. 车钩缓冲装置用过载保护吸能装置综述[J]. 机车车辆工艺,2011,(3):14-16.
Wang XL, Jiang XD. The review of overload protection energy absorption of coupling buffer device[J]. Locomotive & Rolling Stock Technology, 2011,(3): 14-16.
[2] 郑伟,鲁青君,陈书翔. 柴田式车钩缓冲装置过载保护功能研究[J]. 铁道机车车辆,2014, 34(5):28-34.
Zheng W, Lu QJ, Cheng SX. The research of the function of energy absorption coupling buffer device[J]. Railway locomotive & CAR, 2014,34(5): 28-34.
[3] 马青春. 城铁用吸能装置结构浅析[J]. 铁道车辆,2013,51(1):32-34.
Ma QC. Analysis of energy absorption device of commuter trains[J]. Rolling Stock,2013,51(1): 32-34.
[4] 杨杰,刘凤刚. 后置式压溃装置的发开研究[J]. 铁道车辆,2014, 52(6):31-34.
Yang J, Liu FG. The development research of rear-mounted energy absorption device[J]. Rolling Stock, 2014,52(6): 31-34.
[5] 罗昌杰,刘荣强,邓宗全等. 薄壁金属管塑性变形缓冲器吸能特性的试验研究[J]. 振动与冲击,2010,29(4):101-106.
Luo CJ, Liu RQ, Deng ZQ, et al. The experimental study of energy absorption characteristics of thin walled metal tube buffer[J]. Journal of Vibration and Shock, 2010, 52(6): 101-106.
[6] 夏茜,刘国伟,罗玗琪. 鼓胀式压溃吸能结构的碰撞性能研究[J]. 城市轨道交通研究,2013,11:20-24.
Xia X, Liu GW, Luo YQ. On crashworthiness of bulgy type energy absorb structure[J]. Urban Mass Transit, 2013, 11:20-24.
[7] 罗玗琪. B型地铁车辆间鼓胀与诱导组合式吸能结构碰撞性能研究[D]. 长沙:中南大学,2011.
Luo YQ. Research on crashworthiness of both bulgy type and guide combined type energy-absorbing structures between B-type subway vehicles[D]. Changsha: Central South University,2011.
[8] 马彦婷. 胀管式缓冲器吸能特性及优化设计研究[D]. 秦皇岛:燕山大学,2014.
Ma YT. Research on energy absorption characteristic and optimization design of the expansion tube buffer[D]. Qinghuangdao, Yanshan University,2014.
[9] Jakirahemed MD ZZ, Davidson MJ, Venkateswarlu G, Venugopal L. A study on effect of process parameters on the expansion of thin walled aluminum 7075 tubes. Int J Adv Sci Technol 2011;36:83–93.
[10] Almeida BPP, Alves ML, Rosa PAR, Brito AG, Martins PAF. Expansion and reduction of thin-walled tubes using a die: experimental and theoretical investigation. Int J Mach Tools Manuf 2006;46:1643–52.
[11] Shakeri M, Salehghaffari S, Mirzaeifar R. Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation. TCRS 2007;12(5):493–501 .
[12] Yang JL, Lou M, Hua Yl, Lu GX. Energy absorption of expansion tubes using a conical-cylindrical die: experiments and numerical simulation. Int J Mech Sci 2010;52:716–25.
[13] Choi. WM , KimJS , JungHS, Kwon TS. Effect of punch angle on energy absorbing characteristics of tube-type crash elements. Int J Automot Technol, 2011; 12(3): 383−389.
[14] Choi WM, Kwon TS, Jung HS,et al. Influence of impact velocity on energy absorption characteristics and friction coefficient of expansion Tube. Int J Crashworthiness, 2012; 17(6): 621–629 December.
[15] Yan. JL, Yao. SG, Xu. P, et al. Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers. Int J Mech Sci 2016; 105:206–214.
[16] 金玲玲,高霖,史晓凡等. 多道次单点渐进成形变形规律实验研究[J]. 中国机械工程,2014, 25(2):262-266.
Jin LL, Gao L, Shi XF. Experimental study on deformation law of multi-stage single point incremental forming[J]. China Mechanical Engineering, 2014, 25(2): 262-266.
[17] 李军超,耿佩,潘俊杰. 金属板材多道次渐进成形的模拟分析[J]. 热加工工艺,2014,41(13): 79-84.
Li JC, Geng P, Pan JJ. Numerical simulation of multistage incremental forming in sheet metal[J]. Hot working technology, 2014, 41(13): 79-84.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}