复式晶格声子晶体的多带隙实验研究

赵寰宇1,严珠妹1,盖晓玲2,刘兵飞3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 129-133.

PDF(1805 KB)
PDF(1805 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 129-133.
论文

复式晶格声子晶体的多带隙实验研究

  • 赵寰宇1,严珠妹1,盖晓玲2,刘兵飞3
作者信息 +

Experimental evidence of multi-complete bandgaps in compound lattice phononic crystal

  •   ZHAO Huan-yu1  YAN Zhu-mei1  GAI Xiao-ling 2  LIU Bing-fei 3
Author information +
文章历史 +

摘要

由于人工声子晶体具有天然材料所不具备的异常物理性质,它能够调控弹性波或声波的传输。考虑复式晶格可以降低晶体结构的对称性,容易打开完全带隙,进而抑制波的传播。本文设计了单胞含6个“原子”的(3.4.6.4)晶格钢/水声子晶体,结合超声浸水透射技术,测试了第一布里渊区Γ-K和Γ-M方向带隙性质。结果表明:实验得到的宽频段8个完全带隙频率范围和有限元法计算值可以很好地吻合。还详细分析了完全带隙边界频率点本征模态和声波局域效应,这对于设计多带隙隔声材料具有重要参考意义。

Abstract

Phononic crystals are man-made materials possessing rich physical properties to tune propagation of elastic waves or acoustic beyond nature material. Since the structures with compound Bravais lattices may reduce its lattice symmetry, it is show that these lattice structures can generate more complete bandgaps, which prohibit transmission of waves. In this paper, A 6-atom unit cell phononic crystal composed of (3.4.6.4) lattice array of circular steel cylinders in water is devised. Based on the ultrasonic immersion transmission technique, the experimental transmission spectra of bandgaps are measured as the acoustic waves propagate through the phononic crystal in the Γ-K and Γ-M directions. The measured experiment results of frequency ranges of eight complete bandgaps are well consistent with the theoretical values using the finite element method. Further, the eigenmodes and localized effects of complete bandgaps are analyzed in detail. It is very important to design the controlling noise materials of numerous complete bandgaps in the wider frequency ranges.

关键词

声子晶体 / 复式晶格 / 多带隙 / 实验研究

Key words

 phononic crystal / complex lattice / muilti-complete bandgaps / experimental evidence

引用本文

导出引用
赵寰宇1,严珠妹1,盖晓玲2,刘兵飞3. 复式晶格声子晶体的多带隙实验研究[J]. 振动与冲击, 2017, 36(11): 129-133
ZHAO Huan-yu1 YAN Zhu-mei1 GAI Xiao-ling 2 LIU Bing-fei 3 . Experimental evidence of multi-complete bandgaps in compound lattice phononic crystal[J]. Journal of Vibration and Shock, 2017, 36(11): 129-133

参考文献

[1] Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B.    Acoustic  band  structure of  periodic elastic composites [J]. Physical Review Letter, 1993, 71 (13): 2022-2025.
[2] Martínez-Sala R, Sancho J, Sánchez J V, Gómez V, Llinares J, Meseguer F. Sound attenuation by sculpture[J]. Nature, 1995, 378: 241.
[3] LU Ming-hui, Zhang Chao, Feng Liang, Zhao Jun, Chen Yan-feng, Mao Yi-wei, Zi Jian, Zhu Yong-yuan, Zhu Shi-ning, Ming Nai-ben. Negative birefraction of acoustic waves in a sonic crystal[J]. Nature Material, 2007, 6:744-748.
[4] Maldovan M. Sound and heat revolutions in phononics[J].     Nature, 2013, 503: 209-213.
[5] 阮居祺, 卢明辉, 陈延峰, 祝世宁. 基于弹性力学的超构材料[J]. 中国科学: 技术科学,2014, 44(12): 1261-1270.
   RUAN Ju-qi, LU Ming-hui, Chen Yan-feng, Zhu Shi-ning.     Metamaterial based on elastic mechanics[J]. Scientia Sinica Technologica, 2014, 44(12): 1261-1270.
[6] Caballero D, Sánchez-Dehesa J, Rubio C, Mártinez-Sala R, Sánchez-Pérez J V, Meseguer F, Llinares J. Large two-dimensional sonic band gaps[J]. Physical Review E, 1999, 60(6): R6316-R6319.
[7] Hsiao F Li, Khelif A, Moubchir H, Choujaa A, Chen C C, Laude V. Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals[J]. Journal of Applied Physics, 2007, 101(4): 044903.
[8] 赵浩江, 刘荣强, 郭宏伟, 等. 复式类正方格子声子晶体薄板的带隙研究[J]. 振动与冲击, 2015, 34(19): 171-174.
   ZHAO Hao-jiang, LIU Rong-qiang, GUO Hong-wei, et al. Band gaps of thin phononic crystal plates with complex square-like lattice [J]. Journal of Vibration and Shock, 2015, 34(19): 171-174.
[9] 赵寰宇, 何存富, 吴斌, 等. 二维正方晶格多点缺陷声子晶体试验研究[J]. 物理学报, 2013, 62(13): 106103.
   Zhao Huan-yu, He Cun-fu, Wu Bin, et al. Experimental investigation of two-dimensional multi-point defect phononic crystals with square lattice[J]. Acta Physica Sinica, 2013, 62(13): 106103.
[10]高国钦, 马守林, 金 峰,等. 声波在二维固/流声子晶体中的禁带特性研究[J]. 物理学报,2010, 59(1): 393-400.
   GAO Guo-qin, MA Shou-lin, JIN Feng, et al. Acoustic band gap s in finite-sized two-dimensional solid/ fluid phononic crystals[J]. Acta Physica Sinica, 2010, 59(1): 393-400.
[11]汪静丽, 陈鹤鸣. 二维棋盘格子复式晶格的完全光子带隙研究[J]. 物理学报, 2007, 56(2): 922-926.
   WANG Jing-li, CHEN He-ming. Study of complete photonic             band gap in two-dimensiona chessboard of non-Bravais lattice  [J]. Acta Physica Sinica, 2007, 56(2): 922-926.
[12]赵芳, 苑立波¬.二维复式格子声子晶体带隙结构特性.物理学报, 2005, 54(10): 4511-4516.
   ZHAO Fang, YUAN Li-bo. Characteristics of the band    structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516.
[13] 赵寰宇, 汪越胜. (32.4.3.4)晶格声子晶体的多点缺陷试验研究[J]. 机械工程学报, 2015, 51(8):14-19.
   Zhao Huan-yu, Wang Yue-sheng. Experimental investigation of multiple defect states in two-dimensional phononic crystal with (32.4.3.4) lattice[J]. Journal of Mechanical Engineering, 2015, 51(8):14-19.
[14] Mei X F, Liu G Q, He Z J, et al. Experimental investigation of shell modes in two-dimensional phononic crystal consisting of hollow cylinders[J]. Journal of Applied Physics, 2010, 107(6): 064503.
[15] Jovanović Ð, Gajić R, and Hingerl K. Refraction and Band Isotropy in 2D Square-like Archimedean Photonic Crystal Lattices [J]. Optics Express, 2008, 16(6): 4048-4058.

PDF(1805 KB)

Accesses

Citation

Detail

段落导航
相关文章

/