含三次非线性阻尼特性的分子弹簧隔振系统

余慕春 陈前

振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 171-175.

PDF(790 KB)
PDF(790 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 171-175.
论文

含三次非线性阻尼特性的分子弹簧隔振系统

  • 余慕春 陈前
作者信息 +

Molecular spring isolation system with cubic nonlinear damping

  • YU Mu-chun    CHEN Qian
Author information +
文章历史 +

摘要

对含有三次非线性阻尼特性的分子弹簧隔振系统的隔振性能进行了仿真研究和理论分析。分子弹簧隔振器是一种具有高静低动刚度特性的新型隔振器,将MR阻尼器和分子弹簧隔振器并联,并对MR阻尼器实施PI反馈控制来模拟指定的三次非线性阻尼特性,得到兼具高静低动刚度特性和非线性阻尼特性的隔振系统。通过动力学仿真和理论分析研究了三次非线性阻尼特性对分子弹簧隔振系统的隔振性能的影响,通过谐波平衡法深入分析三次阻尼特性的隔振机理。结果表明:三次非线性阻尼特性适用于隔力,可有效抑制共振峰值同时不改变隔振频率区的隔振性能,而三次阻尼特性不适合于隔幅。

Abstract

The present study is concerned with the theoretical analysis and simulation of the effects of nonlinear viscous damping on vibration isolation of molecular spring isolation systems. Molecular spring isolator is a novel vibration isolator which has high-static-low-dynamic stiffness property. To build the nonlinear vibration isolation system, an MR damper is put in parallel with molecular spring isolator and PI feed-back control is used to realize the desired cubic damping property. Simulation is conducted to study the influence of cubic damping on vibration isolation. After that, the vibration isolation mechanism of cubic damping is analyzed by harmonic balance method. The research reveals that, for force transmissibility, only resonant region is modified by cubic damping and the non-resonant region remains unaffected. However, no similar properties of cubic damping can be found for displacement isolation.

关键词

隔振 / 三次阻尼 / 分子弹簧隔振器 / MR阻尼器

Key words

Vibration isolation / Cubic damping / Molecular spring isolator / MR damper

引用本文

导出引用
余慕春 陈前. 含三次非线性阻尼特性的分子弹簧隔振系统[J]. 振动与冲击, 2017, 36(11): 171-175
YU Mu-chun CHEN Qian. Molecular spring isolation system with cubic nonlinear damping[J]. Journal of Vibration and Shock, 2017, 36(11): 171-175

参考文献

[1] 余慕春, 陈前, 高雪, 等. 分子弹簧的隔振机理与力学性能研究[J]. 力学学报, 2014, 46(4): 553-560. ( Yu M C, Chen Q, Gao X, et al. Investigation of molecular spring on vibration isolation mechanism and mechanical properties [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 553-560.)
[2] 余慕春,陈前,高雪. 一种分子弹簧隔振缓冲技术.中国专利: 201310180025X, 2013-05-16. (Yu M C, Chen Q, Gao X. Molecular spring vibration isolation buffering technology, Chinese Patent: 01310180025X, 2013-05-16)
[3] Eroshenko V, Regis R, Soulard M, et al. Energetic: a new field of application of hydrophobic zeolites [J]. Journal of the American Chemical Society, 2001, 123(33): 8129-8130.
[4] Trzpit M, Rigolet S, Paillaud J. Pure silica chabazite molecular spring: a structural study on water intrusion-extrusion processes [J]. Journal of Physical Chemistry, 2008, 112: 7257-7266.
[5] Yu M C, Chen Q, Gao X. Theoretical and Experimental Investigation of Molecular Spring Isolator [J]. Microsystem Technologies. (Published online, doi: 10.1007/s00542-014-2401-7).
[6] 余慕春, 高雪, 陈前.分子弹簧隔振器的动力学特性研究 [J].振动工程学报,已录用.( Yu M C, Gao X, Chen Q. Dynamic Properties of Molecular Spring Isolator [J]. Journal of Vibration and engineering. accepted)
[7] Carrella A, Brennan M J, Waters T P, et al. On the design of a high-static low-dynamic stiffness isolator using linear mechanical springs and magnets [J]. Journal of Sound and Vibration, 2008, 315(3): 712~720.
[8] Yang J, Xiong Y P, Xing J T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism[J]. Journal of sound and vibration, 2013, 332(1): 167-183.
[9] Lang Z Q, Jing X J, Billings S A, et al. Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems[J]. Journal of Sound and Vibration, 2009, 323(1): 352-365.
[10] Ho C, Lang Z Q, Sapinski B, Billings S A. Vibration isolation using nonlinear damping implemented by a feedback-controlled MR damper [J]. Smart materials and structures, 2013, 22: 105010.
[11] 彭志科, 郎自强, 孟光, 等. 一类非线性隔振器振动传递特性分析[J]. 动力学与控制学报, 2011, 9(4): 314-320.(Peng Z, Lang Z, Meng G, et al. Analysis on Transmissibility for  a Class of Nonlinear Vibration Isolators [J] Journal of Dynamic and Control, 2011, 9(4): 314-320.)
[12] Song X, Ahmadian M, Southward S C. Modeling magnetorheological dampers with application of nonparametric approach[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(5): 421-432.
[13] Nayfeh A H, Mook D T. Nonlinear oscillations [M]. New York: Wiley, 1979.
[14] Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012, 55(1): 22-29.
[15] 徐道临, 吕永建, 周加喜, 等. 非线性隔振系统动力学特性分析的 FFT多谐波平衡法[J]. 振动与冲击, 2012, 31(22): 39-44. (Xu D L, Lv Y J, Zhou J X, et al. FFT multi-harmonic balance method for dynamic analysis of a nonlinear vibration isolation system[J]. Journal of Vibration and Shock, 2012, 31(22): 39-44.)

PDF(790 KB)

Accesses

Citation

Detail

段落导航
相关文章

/