讨论了载体位置、姿态均不受控情况下,存在外部扰动漂浮基两杆柔性空间机械臂的基于速度观测器的增广自适应运动控制与振动最优控制问题。首先选择合适的联体坐标系,利用Lagrange方法并结合动量守恒原理建立了飘浮基两杆柔性空间机械臂系统的动力学方程。接着利用奇异摄动法,将两杆柔性空间机械臂系统分解为一个关于载体姿态、关节轨迹跟踪的慢变子系统与一个描述柔性杆振动的快变子系统。以此为基础,提出了一个包含慢变控制项与快变控制项的复合控制器。利用自适应滑模观测器得到慢变子系统的观测速度向量,基于这个观测速度向量设计得到系统的增广自适应慢变控制律来实现关节轨迹的跟踪。利用线性观测器得到快变子系统的观测速度向量,基于这个观测速度向量并运用线性系统的最优控制理论得到了系统的快变控制律来实现柔性杆振动最优控制。系统的数值仿真证实了方法的有效性。该控制方案不需直接测量关节角速度、关节角加速度与柔性振动模态坐标导数以及漂浮基的位置、移动速度、移动加速度。
Abstract
The augmented kinematic control and vibration suppress based velocity observer for a free-floating two-flexible-link space manipulator with external disturbances is addressed. Firstly the dynamic model of a free-floating two-flexible-link space manipulator is established by the momentum conservation and the Lagrange equations. Secondly based on singular perturbation approach,a singular perturbation model has been formulated, which consists of a slow subsystem and a flexible-link fast subsystem. The fast subsystem represents the vibration of the flexible links, and the slow subsystem represents the rigid movement of the system. Then a composite controller which consists of a slow control component and a fast control component is proposed. The slow subsystem’s estimated velocity is constructed by an adaptive sliding velocity observer. Based on the estimated velocity of the slow subsystem, an augmented adaptive control algorithm is applied to the slow subsystem to track the desired trajectory of the base attitude and the joints. The estimated velocity of the fast subsystem is constructed by a linear velocity observer. Based on the estimated velocity of the fast subsystem, the fast controller is designed to damp out the vibration of the flexible links by using optimal Linear Quadratic Regulator (LQR) method. Finally the numerical simulation is carried out, which demonstrates the controller proposed is feasible and effective. The virtue of this control scheme is that the linear position, linear velocity, linear acceleration of the base, the angular velocities, angular accelerations of the joints as well as the derivatives of the flexible vibration modes needn’t be measured directly.
关键词
飘浮基两杆柔性空间机械臂 /
奇异摄动法 /
自适应控制 /
增广法 /
速度观测器 /
振动最优控制
{{custom_keyword}} /
Key words
free-floating two-flexible-link space manipulator /
singular perturbation approach /
adaptive control /
augmented approach /
velocity observer /
vibration optimum control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Garneau M. Space in the service of society: a canadian case study[C]//Proceedings of 2nd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2005: 1-6.
[2] Holcomb L B, Montemerlo, M D. NASA automation and robotics technology program[J]. IEEE Aerospace and Electronic Systems Magazine, 2009, 2(4):19-26.
[3] Yoshida K. Achievements in space robotics[J]. IEEE Robotics and Automation Magazine, 2009, 16(4): 20-28.
[4] Canudas De Wit C, Fixot N. Adaptive control of robot manipulators via velocity estimated feedback.[J]. IEEE Transactions on Automatic Control, 1992, 37(8): 1234-1237.
[5] 苏文敬,吴立成,孙富春等. 空间柔性双臂机器人系统建模、控制与仿真研究[J]. 系统仿真学报,2003, 15(8):1098-1100.
Su Wen-jing, Wu Li-cheng, Sun fu-chun, et al. Dynamics modeling, control and simulation for flexible dual-arm space robot[J]. Journal of System Simulation, 2003, 15(8): 1098-1100.
[6] Yoshisada M, Showzow TS,Kei S, et al. Trajectory control of flexible manipulators on a free-flying space robot[J]. IEEE Control Systems. 1992, 12(3): 51-57.
[7] 戈新生,崔玮,赵秋玲. 刚柔性耦合机械臂轨迹跟踪与振动抑制[J]. 工程力学,2005,22(6):188-191.
Ge Xin-sheng, Cui wei, Zhao qiu-ling. Trajectory tracking control and vibration suppression of rigid flexible manipulators[J], Engineering Mechanics, 2005, 22(6): 188-191.
[8] 洪昭斌,陈力. 漂浮基柔性空间机械臂关节运动的拟增广自适应控制及柔性振动实时主动抑制 [J]. 振动与冲击,2010,29(1) : 200-206.
Hong Zhaobin, Chen Li. Active vibration control and augmented adaptive control of free-floating space flexible manipulator [J]. Journal of Vibration and Shock,2010,29(1): 200-206.
[9] Yu X Y, Chen L. Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators[J]. Proc. IMechE Part C: J Mechanical Engineering Science, DOI: 10.1177/0954406214551777.
[10] Carusone J., Buchan K.S., and D’Eleuterio G. M. T. Experiments in end-effector tracking control for structurally flexible space manipulators[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5): 553–560
[11]于潇雁,陈力.参数不确定与有界干扰自由飘浮柔性空间机械臂基于速度观测器的奇异摄动鲁棒控制及振动抑制[J]. 振动与冲击,2015,34(14):85-92.
Yu Xiaoyan, Chen Li. Velocity observer based singular perturbation robust control and vibration suppression for a free-floating flexible space manipulator with unknown payload parameters and bounded disturbances[J]. Journal of Vibration and Shock,2015,34(14):85-92.
[12] Alessandro D L, Bruno S. Closed-form dynamic model of planar multilink lightweight robots[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(4): 826-839.
[13] 蔡国平. 存在时滞的柔性梁的振动主动控制[J]. 固体力学学报,2004,25(1) : 29-34.
Cai Guoping. Active vibration control of a flexible beam with time delay in control[J]. Acta Mechanica Solida Sinica, 2004,25(1) : 29-34.
[14] 于潇雁,陈力. 飘浮基两杆柔性空间机械臂的振动分析与振动抑制[J]. 载人航天,2016,22(3):354-360.
Yu Xiaoyan, Chen Li. Vibration Analysis and Suppression of Free-floating Space Manipulator with Two Flexible Links[J]. Manned Spaceflight,2016,22(3):354-360.
[15] Kokotovic P, Khalil H K, O’Reilly J. Singular Perturbation Methods in Control Analysis and Design[M], Academic Press, 1986.
[16] Siciliano B, Sciavicco L, Villani L, et al. Robotics, Modelling, Planning and Control, Springer 2009.
[17] Slotine J E, Li W P. On the adaptive control of robot manipulators [J]. Journal of the Robotics Research, 1987, 6(3): 49-59.
[18] Arteaga Marco A, Kelly R. Robot control without velocity measurements: New theory and experimental results[J]. IEEE Transactions on Robotics and Automation, 2004, 20(2): 297-308.
[19] Slotine J J E, Li W P. Adaptive manipulator control: A case study[J]. IEEE Transactions on Automatic Control, 1988,33(11):995-1003.
[20] Canudas de Wit C, Slotine, J J E. Sliding observers for robot manipulators[J]. Automatica, 1991,27(5):859-864.
[21] Filippov, A. F. Differential equations with discontinuous right-hand side[J]. Amer. Math. Soc. Trans., 1960,62:199.
[22] Lee J Y, Ha T J, Yeon J S, et al. Robust Nonlinear Observer for Flexible Joint Robot Manipulators with Only Motor Position Measurement[C]//International Conference on Control, Automation and Systems 2007, COEX, Seoul, Korea, 2007: 56-61.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}