基于谱系聚类分析的桥梁结构模态参数自动化识别方法研究

徐健1,周志祥1,唐亮1,冉杰2,何杰3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 206-214.

PDF(2390 KB)
PDF(2390 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 206-214.
论文

基于谱系聚类分析的桥梁结构模态参数自动化识别方法研究

  • 徐健1,周志祥1,唐亮1,冉杰2,何杰3
作者信息 +

Automatic identification of Bridge structure modal parameters based on the improved EEMD and the pedigree clustering analysis method

  •  Jian Xu1,Zhixiang Zhou1,Liang Tang1,Jie Ran2,Jie He3
Author information +
文章历史 +

摘要

桥梁结构模态参数识别作为桥梁健康监测系统的重要组成部分之一,对桥梁的长期健康监测具有重要意义。而现有的模态参数识别算法还不能实现结构系统阶次和模态参数的自动化识别,基于此,本文先简单介绍了随机子空间算法的基本原理;其次通过引入“滑窗技术”以实现对时变结构模态参数的在线识别;接着针对稳定图定阶难这一问题,提出了基于奇异熵理论的系统定阶算法,以实现系统阶次的自动化确定;接着又将统计学中的“谱系聚类算法”与随机子空间算法进行结合,实现桥梁结构模态参数的自动化识别。最后利用本文算法识别苏通大桥在竖桥向和横桥向的模态参数结果,并将其与理论计算值进行对比分析,结果表明:本文算法不仅能实现桥梁结构系统阶次的自动化确定,还能实现模态参数的自动化识别,方便对桥梁结构参数的实时监控,了解桥梁结构的健康运营状态。

Abstract

As one of the important parts of bridge health monitoring system, the bridge structure modal parameters identification has great signification for the long-term health monitoring of bridge. However, the existing modal parameter identification algorithms cannot realize the adaptive decomposition of structural response signal and automatic identification of modal parameters. In that case, this article provides a brief introduction to the basic principle of stochastic subspace algorithm firstly; And then the sliding window was introduced in order to realize the on-line identification of time-varying structure modal parameters; And the system order algorithm was put forward based on the singular entropy theory that is aimed at the problem of ordering difficulty, so as to realize the automation system order determine; Finally, it was the hierarchical clustering algorithm in statistics combined with random subspace algorithm that to realize the automation identification of bridge structure modal parameters. At last, the proposed algorithm in this article was used to identify the modal parameters of the Sutong Bridge in vertical and transverse direction, and the identify results were analyzed comparing with the real value, the results show that this proposed algorithm can not only realize the automatically determine of system order, also can realize the automatic identifying of modal parameters as well as real-time monitoring of the bridge structure parameters, so that to real-time monitoring the running status of the bridge structure.
 

关键词

桥梁结构 / 滑窗技术 / 随机子空间算法 / 模态参数 / 谱系聚类算法

Key words

Bridge structure
/ Sliding window technique / Stochastic subspace identification / Modal parameter / Hierarchical clustering algorithm

引用本文

导出引用
徐健1,周志祥1,唐亮1,冉杰2,何杰3. 基于谱系聚类分析的桥梁结构模态参数自动化识别方法研究[J]. 振动与冲击, 2017, 36(11): 206-214
Jian Xu1,Zhixiang Zhou1,Liang Tang1,Jie Ran2,Jie He3. Automatic identification of Bridge structure modal parameters based on the improved EEMD and the pedigree clustering analysis method[J]. Journal of Vibration and Shock, 2017, 36(11): 206-214

参考文献

[1] 秦世强.桥梁健康监测与工作模态分析的理论和应用及系统实现[D].西南交通大学,2013.
Shiqiang Qin.Health monitoring implementation and theory and application and system operational modal analysis of [D]. Southwest Jiaotong University, 2013.
[2] Virote Boonyapinyo, Tharach Janesupasaeree. Data-driven stochastic subspace identification of  flutter  derivatives  of  bridge  decks.  Journal  of  Wind  Engineering  and  Industrial Aerodynamics, 2010, 98(12): 784-799.
[3] 淳庆,邱洪义.基于环境激励下钢桁架桥的模态参数识别[J].特种结构,2005,62-65.
Chun Qing, Qiu Hongyi. The Modal Parameter Identification of Steel Truss Bridge Based on The Environment Excitation [J]. Special Structures, 2005, 62-65.
[4] 傅志方,华宏星.模态分析理论与应用.上海交通大学出版社,2000.
Zhifang Fu, Hongxing Hua. Modal Analysis Theory And Application. Shanghai Jiao Tong University Press, 2000.
[5] 刘宗政,陈恳.基于环境激励的桥梁模态参数识别[J].振动、测试与诊断,2010,30(3):300-303
Liu Zongzheng Chen Ken. Bridge Modal Parameters Identification Based on Environment Excitation [J]. Journal of Vibration Measurement & Diagnosis, 2010, 30 (3) : 300-303
[6] 孙国富.基于模糊聚类的模态参数自动识别[J].振动与冲击, 2010, 29(9): 86-88.
Guofu Sun. Automatic Identification of Modal Parameters Based on the Fuzzy Clustering Analysis [J]. Journal of Vibration and Shock, 2010, 29 (9): 86-88.
[7] 续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J]. 振动与冲击. 2002, 21(3): 1-5.
Zhongxiu Xu,Hongxing Hua, Zhaoneng Chen. A Survey of Modal Parameter Identification Based on the Environment Excitation [J]. Journal of Vibration and Shock. 2002, 21 (3) : 1-5.
[8] 练继建,李火坤,张建伟.基于奇异熵定阶降噪的水工结构振动模态ERA识别方法[J].中国科学: E辑. 2008. 38(9). 1398-1413.
Jijian Lian, Huokun Li, Jianwei Zhang. Hydraulic Structure Vibration Modal ERA Identification According to De-noising Order of Singular Entropy [J]. Science China: Series E. 2008, 38 (9), 1398-1413.
[9] 章伟宜.随机子空间方法结构模态识别的数值仿真[J].工程与建设,2011,25(2): 162-163.
Weiyi Zhang. Numerical Simulation of Structural Modal Identification in Stochastic Subspace Identification Method [J]. Journal of Engineering and Construction, 2011, 25 (2): 162-163.
[10] 周思达,周小陈,刘莉,杨武.基于模糊聚类的模态参数全因素自动验证方法[J].北京航空航天大学学报,2015,41(5).
Sida Zhou, Xiaochen Zhou, Liu Li, Yang Wu. The Modal Parameters of The Automatic Verification Method Based On The Fuzzy Clustering Factors [J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 9 (5).
[11] 单德山,李乔,黄珍.桥梁动力测试信号的自适应分解与重构[J].振动与冲击.2015(03).
Deshan Shan,Li Qiao,Huang Zheng.Adaptive Bridges dynamic test signal decomposition and reconstruction [J]. Vibration and Shock .2015 (03).

PDF(2390 KB)

Accesses

Citation

Detail

段落导航
相关文章

/