考虑应力波效应,通过Hamilton原理得到轴向阶跃荷载下复合材料圆柱壳非轴对称动力屈曲控制方程。根据圆柱壳周向连续性设出径向位移的周向函数形式,使用分离变量法得到应力波反射前复合材料圆柱壳动力屈曲临界荷载解析解及屈曲模态,将该结果与里兹法所得结果进行了对比,结果表明两种方法所得临界荷载差值等于转动惯性的影响项。用MATLAB软件编程分析了径厚比、铺层角度等因素对临界荷载的影响。结果表明转动惯性对圆柱壳动力屈曲临界荷载的影响可以忽略,环向模态数越大,临界荷载越大且对应的屈曲模态图越复杂。
Abstract
Considering the effect of stress wave, the non-axisymmetric dynamic buckling governing equation of composite cylindrical shells under axial step load is derived by using the Hamilton principle. The expression of radial displacement function along the circumferential direction is got since the cylindrical shell is closed. The analytical solution of the critical load on the dynamic buckling of composite cylindrical shell and buckling modes can be obtained based on Variable Separation method before the reflection of stress wave. Comparing the critical load with the result got by Ritz method, the results show that the difference between them is equal to the value caused by rotational inertia. The influences of diameter-thickness ratio, ply orientations, etc. on critical load are analyzed by programming with MATLAB software, and the results show that the critical load will increase and the buckling modes will be more complex for high circumferential modes, and the effect of rotational inertia on critical load can be neglected.
关键词
复合材料 /
应力波 /
动力屈曲 /
非轴对称 /
解析解
{{custom_keyword}} /
Key words
composite /
stress wave /
dynamic buckling /
non-axisymmetric /
analytical solution
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shaw D, Shen Y L, Tsai P. Dynamic buckling of an imperfect composite circular cylindrical shell [J]. Computers & Structures, 1993, 48(3): 467-472.
[2] 唐文勇,陈铁云. 复合材料圆柱壳的轴向非对称冲击动力屈曲[J]. 上海交通大学学报,1998, 32(11): 62-70.
TANG Wen-yong, CHEN Tie-yun. Axially asymmetrical dynamic buckling of composite cylindrical shells [J]. Journal of Shanghai Jiaotong University, 1998, 32(11): 62-70.
[3] 于学会. 复合材料圆柱壳的动力屈曲及侵彻行为研究[D]. 太原:太原理工大学,2012.
YU Xue-hui. Research on dynamic buckling and penetration behavior of composite cylindrical shell [D]. Taiyuan: Taiyuan University of Technology, 2012.
[4] XU Xin-sheng, MA jian-qing, Lim C W,et al. Dynamic local and global buckling of cylindrical shells under axial impact [J]. Engineering Structures, 2009, 31(5): 1132-1140.
[5] XU Xin-sheng, MA Yuan, Lim C W,et al. Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system [J]. International Journal of Solids and Structures, 2006, 43(13): 3905-3919.
[6] 王加群. 复合材料圆柱壳的动力屈曲与混沌行为[D]. 太原:太原理工大学,2015.
WANG Jia-qun. Dynamic buckling and chaotic behavior of composite cylindrical shell [D]. Taiyuan: Taiyuan University of Technology, 2015.
[7] Rahman T, Jansen E L, Gurdal Z. Dynamic buckling analysis of composite cylindrical shells using a finite element based perturbation method [J]. Nonlinear Dynamics, 2011, 66(3): 389-401.
[8] Bisagni C. Numerical analysis and experimental correlation of composite shell buckling and post-buckling [J]. Composites Part B: Engineering, 2000, 31(8): 655-667.
[9] Bisagni C. Dynamic buckling of fiber composite shells under impulsive axial compression [J]. Thin-Walled Structures, 2005, 43(3): 499-514.
[10] Patel S N, Bisagni C, Datta P K. Dynamic buckling analysis of a composite stiffened cylindrical shell [J]. Structural Engineering and Mechanics, 2011, 37(5): 509-527.
[11] Tafreshi A. Buckling and post-buckling analysis of composite cylindrical shells with cutouts subjected to internal pressure and axial compression loads [J]. International Journal of Pressure Vessels and Piping, 2002, 79(5): 351-359.
[12] 沈观林,胡更开,刘彬. 复合材料力学(第2版)[M]. 北京:清华大学出版社,2013.
SHEN Guan-lin, HU Geng-kai, LIU Bin. Mechanics of Composite Materials(Second Edition) [M]. Beijing: Tsinghua University Press, 2006.
[13] 韩志军. 直杆的撞击屈曲及其应力波效应的实验和理论研究[D]. 太原:太原理工大学,2005.
HAN Zhi-jun. Experimental and theoretic studies on the impact buckling of columns and effect of stress wave [D]. Taiyuan: Taiyuan University of Technology, 2005.
[14] 李楠. 面内阶跃载荷作用下板的动力屈曲的里兹法研究和计算机模拟[D]. 太原:太原理工大学,2015.
LI Nan. The ritz research and computer simulation on dynamic buckling of plates under axial step loading [D]. Taiyuan: Taiyuan University of Technology, 2015.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}