平动与转动受迫谐振圆柱的水动力特性分析

刘名名,唐国强,吕林,滕斌

振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 31-40.

PDF(1911 KB)
PDF(1911 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 31-40.
论文

平动与转动受迫谐振圆柱的水动力特性分析

  • 刘名名,唐国强,吕林,滕斌
作者信息 +

Hydrodynamic characteristics of laminar flow over a circular cylinder with combined forced harmonic rotational and transverse oscillations

  • LIU Ming-Ming, TANG Guo-Qiang, LU Lin, TENG Bin
Author information +
文章历史 +

摘要

通过求解二维不可压缩粘性流体的Navier-Stokes方程,对低雷诺数下圆柱同时具有周期性旋转和横流向振动的流固耦合问题开展了数值分析研究。重点考察了不同强迫振动频率(f*[0.5, 2.0])以及转动与平动之间的相位差(φ=±180º,±120º,±60º及0º)下,圆柱结构的受力特性、锁定模式及尾迹涡流场演化特征。数值分析结果表明,在周期性转动和平动的联合激励下,流动过程除存在常规的基本锁定(Primary Lock-in)现象外,还存在非线性准周期锁定(Quasi-periodic Lock-in)现象;旋转运动与横流振动之间的相位差φ对锁定形式及锁定的频率区间有重要影响,对称的正负相位差可导致高度一致或截然不同的锁定形式;两自由度谐振圆柱的水动力系数在锁定条件下会发生明显跳跃,总体上随强迫振动频率的增大而增大;对于特殊的准周期锁定情况,尾迹区内存在涡旋结构的多级次非线性分叉行为,尾涡演化过程遵循准周期特性。

Abstract

Based on the two-dimensional finite element solution of incompressible viscous Navier-Stokes equations in the frame of Arbitrary Lagrangian-Eulerian (ALE) method, the hydrodynamics of laminar flow over a circular cylinder with combined forced harmonic rotational and transverse oscillations are examined. The effects of oscillatory frequency (f* [0.5, 2.0] with an interval of 0.05) and phase difference between the rotation and translation motions (φ=±180º, ±120º, ±60º and 0º) on the fluid forces, lock-in characteristic and wake mode are presented. Two distinct lock-in modes are identified for the present two-degree-of-freedom forced oscillations, namely the ordinary primary lock-in and the nonlinear quasi-periodic lock-in. The phase difference has profound influence on the type of lock-in and the corresponding lock-in regime. Two opposite phase difference can result in highly consistent or quite different lock-ins. The fluid forces on the circular cylinder generally increase with the oscillating frequency, and the hydrodynamic jumps can be observed. For the specific quasi-periodic lock-in with five forced oscillatory periods, double or triple vortex splits in three different stages are involved in the evolution of wake flow, which are consistent with the essence of quasi-periodic oscillation. 
 

关键词

圆柱 / 旋转振动 / 横流向振动 / 准周期锁定 / 尾涡模式

Key words

Circular cylinder / rotational oscillation / transverse oscillation / quasi-period lock-in / wake mode

引用本文

导出引用
刘名名,唐国强,吕林,滕斌. 平动与转动受迫谐振圆柱的水动力特性分析[J]. 振动与冲击, 2017, 36(11): 31-40
LIU Ming-Ming, TANG Guo-Qiang, LU Lin, TENG Bin. Hydrodynamic characteristics of laminar flow over a circular cylinder with combined forced harmonic rotational and transverse oscillations[J]. Journal of Vibration and Shock, 2017, 36(11): 31-40

参考文献

[1] Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluid and Structures, 1988, 2(4): 355-381.
[2] Lu X Y, Dalton C. Calculation of the timing of vortex formation from an oscillating cylinder[J]. Journal of Fluid and Structures, 1996, 10(5): 527-541.
[3] Blackburn H M, Henderson R D. A study of two-dimensional flow past an oscillating cylinder[J]. Journal of Fluid Mechanics, 1999, 385: 255-286.
[4] Anagnostopoulos P. Numerical study of the flow past a cylinder excited transversely to the incident stream. Part 1: Lock-in zone, hydrodynamic forces and wake geometry[J]. Journal of Fluid and Structures, 2000, 14(6): 819-851.
[5] Carberry J, Sheridan J, Rockwell D. Forces and wake modes of an oscillating cylinder[J]. Journal of Fluid and Structures, 2001, 15: 523-532.
[6] Guilmineau E, Queutey P. A numerical simulation of vortex shedding from an oscillating circular cylinder[J]. Journal of Fluid and Structures, 2002, 16(6): 773-794.
[7] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibration[J]. Journal of Fluid and Structures, 2004, 19(4): 389-447.
[8] Leontini J S, Stewart B E, Thompson M C, et al. Wake state and energy transitions of an oscillating cylinder at low Reynolds number[J]. Physics of Fluids, 2006, 18: 067101.
[9] Ongoren A, Rockwell D. Flow structure from an oscillating cylinder. Part 2. Mode competition in the near wake[J]. Journal of Fluid Mechanics, 1988, 191: 225-245.
[10] Cetiner O, Rockwell D. Streamwise oscillations of a cylinder in a steady current. Part 1. Locked-on states of vortex formation and loading[J]. Journal of Fluid Mechanics, 2001, 427: 1-28.
[11] Xu S J, Zhou Y, Wang M H. A symmetric binary-vortex street behind a longitudinally oscillating cylinder[J]. Journal of Fluid Mechanics, 2006, 556: 27-43.
[12] Leontini J S, Jacono D L, Thompson M C. Wake state and frequency selection of a streamwise oscillating cylinder[J]. Journal of Fluid Mechanics, 2013, 730: 162-192.
[13] Du L., Sun X. Suppression of vortex-induced vibration using the rotary oscillation of a cylinder[J]. Physics of Fluids. 2015, 27: 023603.
[14] Bai, W. Numerical simulation of flow past a rotating and rotary oscillating circular cylinder on unstructured meshes. Coupled System Mechanics. 2013. 2: 191-241.
[15] Mittal S, Kumar B. Flow past a rotating cylinder[J]. Journal of Fluid Mechanics, 2003, 476: 303-334
[16] Lu L, Qin J M, Teng B, et al. Numerical investigations of life suppression by feedback rotary oscillation of circular cylinder at low Reynolds number[J]. Physics of Fluids, 2001, 23: 033601.
[17] Baek S J, Sung H J. Numerical simulation of the flow behind a rotary oscillating circular cylinder[J]. Physics of Fluids, 1998, 10(4): 869-876.
[18] Choi S, Choi H, Kang S. Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number[J]. Physics of Fluids, 2002, 14(8): 2767-2777.
[19] Blackburn H M, Elston J R, Sheridan J. Bluff-body propulsion produced by combined rotary and translation oscillation[J]. Physics of Fluids, 1999, 11(1): 4-6.
[20] Nazarinia M, Jacono D L, Thompson M C, et al. Flow behind a cylinder forced by a combination of oscillatory translational and rotational motions[J]. Physics of Fluids, 2009, 21: 051701.
[21] Jiang C B, Kawahara M. A three-step finite element method for unsteady incompressible flows[J]. Computational Mechanics, 1993, 11: 355-370.
[22] 郭晓玲, 唐国强, 刘名名, 等. 低雷诺数下串联双圆柱涡激振动机理的数值研究[J]. 振动与冲击, 2014, 33(4): 60-69.
GUO Xiao-ling, TANG Guo-qiang, LIU Ming-ming et al. Numerical investigation on vortex induced vibration of twin tandem circular cylinders under low Reynolds number[J]. Journal of Vibration and Shock, 2014, 33 (4): 60-69.
[23] 刘为民, 谷家扬, 陶延武, 等. 低质量比圆形四立柱涡激运动特性研究[J]. 振动与冲击, 2015, 34(19): 175-180.
LIU Wei-min, GU Jia-yang, TAO Yan-wu, et al. Vortex induced motion characteristics of four circular columns with a low mass ratio[J]. Journal of Vibration and Shock, 2015, 34 (19): 175-180.
[24] Williamson C H K, Govardhan R. Vortex-induced vibration[J]. Annual Review of Fluid Mechanics, 2004, 36: 413-455.
[25] 朗道 Л Д, 栗弗席兹 E M. 流体动力学(第五版)[M]. 李植 译, 北京: 高等教育出版社, 2013.
Landau L D., Lifshitz E M. Fluid mechanics (5th edition)[M]. Translated by LI Zhi. Beijing: Higher Education Press, 2013.

PDF(1911 KB)

Accesses

Citation

Detail

段落导航
相关文章

/