系统研究了Ti-Ni形状记忆合金丝应力-应变曲线、特征点应力、耗能能力、等效阻尼比等随材料直径、应变幅值、加载循环次数的变化规律,结果表明:丝材直径的增加会导致SMA丝力学性能趋于劣化;当应变幅值为6%、加载循环次数达15次时,可获得滞回性能良好、工作稳定的SMA丝材。将训练后所得SMA丝材,利用其超弹性特性,结合调谐质量阻尼器基本工作原理,设计制作了一类可便于拆卸的SMA复合悬摆减震系统。针对该类减震系统,完成了相应的性能试验,分析了该系统自振频率、质量振子与受控结构间的相位关系、等效阻尼力随振子质量、摆杆长度的变化规律,结果表明:该减震系统在正弦波和真实地震激励下质量振子与受控体结构之间相位关系始终较好的保持在150°~180°之间;同时,等效阻尼力随外荷载幅值的增大,控制效果更加明显。综上,该系统能够简便应用于结构振动控制之中,并提供稳定、高效的阻尼力,从而保护结构免于强动力灾害。
Abstract
Systematic study is conducted on variation regularity for stress-strain curve, feature points stress, dissipated energy, equivalent damping ratio of shape memory alloy (SMA)wires changed with diameter of wires, strain amplitude and loading cyclic number. The results show: increase of SMA wires diameter can degrade the mechanical properties of SMA wires; SMA wires can have good and stable hysteretic performance when the strain amplitude is 6% and the loading cyclic number is 15. Utilizing the superelasticity of SMA and combining operating principle of the tuned mass damper, a kind of SMA suspension pendulum damping system ,which is easy to disassembly, is designed and fabricated with the trained SMA wires. Corresponding experiments were conducted to analyzed natural frequency of the damping system, phase relations between quality vibrators and a controlled structure, variation regularity of the equivalent damping force changed with quality vibrators and length of swing links. The results show that phase relations between the quality vibrators and a controlled structure can keep steadily at 150°~180° when this damping system subjected to sine wave and real earthquake wave. Meanwhile, the equivalent damping force increases significantly with amplitude of external loads. In conclusion, this damping system can provide stable and efficient damping force and be applied simply to vibration control in structures, thus protect structures from strong dynamic disasters.
关键词
超弹性特性 /
形状记忆合金复合悬摆减震系统 /
相位关系 /
等效阻尼力
{{custom_keyword}} /
Key words
superelasticity /
SMA suspension pendulum damping system /
phase relation /
equivalent damping force
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]薛素铎,石光磊,庄鹏. SMA复合摩擦阻尼器性能的试验研究[J].地震工程与工程振动,2007,02:145-151. (XUE Suduo, SHI Guanglei, ZHUANG Peng. Performance testing of SMA incorporated friction dampers[J].JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION,2007,02:145-151. (in chinese))
[2]孟庆利.SMA金属橡胶阻尼器减振效能试验研究[J].西安建筑科技大学学报(自然科学版),2015,06:804-807.( MENG Qingli. The study on dissipation behavior of SMA pseudo-rubber metal damper by experiments[J].Journal of Xi'an University of Architecture & Technology,2015,06:804-807. (in chinese))
[3]邢德进.新型SMA阻尼器及结构减震控制应用研究[D].天津大学,2008. (Xing De-Jin. New SMA Damper and Application for Seismic Reduction and Control of Structures[D].Tiajin University,2008.(in chinese))
[4]Corbi O. Shape memory alloys and their application in sturctural oscillations attenuation[J]. Simulation Modeling Practice and Theory, 2003, 11(5-6): 387-402.
[5]陈云,吕西林,蒋欢军.新型耗能增强型SMA阻尼器设计和滞回耗能性能分析[J].中南大学学报(自然科学版),2013,06:2527-2536. (HEN YunL, Xilin JIANG, Huanjun. Design and hysteretic energy analysis of new enhanced energy dissipation SMA damper [J]. Journal of Central South University(Science and Technology), 2013,06:2527-2536. (in chinese))
[6]任文杰,李宏男,宋钢兵,钱辉.新型自复位SMA阻尼器对框架结构减震控制的研究[J].土木工程学报,2013,06:14-20. (Ren Wen-jie, Li Hong-nan, Song Gang-bing, Qian Hui. Study on seismic response control of frame structure using innovative re-centring SMA damper[J].China Civil Engineering Journal,2013,06:14-20. (in chinese))
[7]吴昀泽.形状记忆合金的力学性能与本构模型研究[D].华南理工大学,2012. (Wu Yun-Ze. Study on mechanical properties and constitutive model of shape memory alloy[D].South China University of Technology, 2012. (in chinese))
[8]Anh N D, Nguyen N X. Design of TMD for damped linear structures using the dual criterion of equivalent linearization method[J]. International Journal of Mechanical Sciences, 2013, 77(12): 164-170.
[9]覃方芳.被动调谐质量阻尼器用于多层厂房振动控制的研究[D].兰州:兰州理工大学,2012.(QIN Fang-fang. Study on Vibration Control of Multi-Storey Factory Floor by Using of TMD[D]. Lanzhou: Lanzhou University of Technology, 2012. (in chinese))
[10] Ray W Clough, Joseph Penzien. Dynamics of structures [M]. McGraw-Hill, 2007:15-17.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}