传统的等强度延性需求谱通常难以有效考虑强度退化、刚度退化、捏拢效应以及双向恢复力耦合效应的影响。鉴于此,本文基于双轴Bouc-Wen-Baber-Noori模型,建立了双向地震激励作用下单质点双自由度体系非弹性地震反应谱的基本方程,并定量分析了强度退化、刚度退化、捏拢效应和双向恢复力耦合效应对结构地震延性需求的影响,进而分别建立了等强度延性需求的均值谱和标准差谱的预测方程。分析结果表明:强度退化、刚度退化和捏拢效应会增大结构的地震延性需求;双向恢复力的耦合效应对地震延性需求的影响,取决于结构沿两个主轴方向地震耗能能力的相互竞争;退化、捏拢和耦合效应会明显增大结构地震延性需求的标准差,且非线性程度越高,随机性表现越明显;随着结构沿两个主轴方向自振周期的增加,等强度地震延性需求的均值和标准差均逐渐减小。
Abstract
Traditional constant-strength ductility demand spectral is difficult to consider the influence of strength degradation, stiffness degradation, pinching effect and coupling effect of bi-directional restoring forces effectively. In this study, the fundamental equation of the inelastic seismic response spectral for the single mass with two-degree-of-freedom (SM-2DOF) system under bi-directional excitations was proposed based on the biaxial Bouc-Wen-Baber-Noori model. Then the influence of strength degradation, stiffness deterioration, pinching effect and coupling effect of the bi-directional restoring forces on the seismic ductility demand of the SM-2DOF system were investigated quantificationally. Furthermore, the mean and standard deviation prediction models for the constant-strength ductility demand spectral were developed. The results show that the strength degradation, stiffness deterioration and pinching effect could increase the seismic ductility demand of the SM-2DOF system significantly; and the influence of the coupling effect of bi-directional restoring forces on the seismic ductility demand is largely dependent on the competitive relationship between the hysteretic energy along the two principal direction of structures; the degradation, pinching and coupling effect could increase the standard deviation of the constant-strength ductility demand spectral, especially for the SM-2DOF system with high nonlinearity; Finally, the mean value and standard deviation of constant-strength ductility demand spectral decrease with the increasing of fundamental vibration period along the two principal direction of building structures.
关键词
双向地震激励 /
滞回模型 /
非弹性反应谱 /
BWBN模型 /
等强度延性需求谱
{{custom_keyword}} /
Key words
Bi-directional excitations /
hysteresis model /
inelastic response spectral /
BWBN model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王东升, 李宏男, 王国新. 双向地震动作用弹塑性反应谱研究[J]. 大连理工大学学报, 2005, 45(2): 248-254. (Wang Dongsheng, Li Hongnan. Research on inelastic response spectra for bi-directional ground motions [J]. Journal of Dalian University of Technology. 2005, 45(2): 248-254.) (in Chinese)
[2] 王丰, 李宏男, 伊廷华. 考虑双向地震激励的标准化地震输入能量反应谱研究[J]. 工程力学, 2014, 31(5): 95-100. (Wang Feng, Li Hongnan, Yi Tinghua. Study on standard earthquake input energy spectrum for biadirectional earthquake excitations [J]. Engineering mechanics, 2014, 31(5): 95-100.) (in Chinese)
[3] 王丰, 李宏男. 基于双向地震叠加输入的强度折减系数谱研究[J]. 地震工程与工程振动, 2014, 34(001): 19-26. (Wang Feng, Li Hongnan. Research on the strength reduction factor spectra based on the superposition of bi-directional earthquake excitations [J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(001): 19-26.)
[4] AASHTO. Standard specification for highway bridges (16th Edition) [S]. 1996.
[5] ATC-32. Improved seismic design criteria for California bridges: Provisional recommendations [S]. 1996.
[6] European committee for standardization (CEN). Eurocode 9 [S]. 1996
[7] 余波, 洪汉平, 杨绿峰. 双向地震激励和P-Δ效应对延性需求的影响[J]. 振动与冲击, 2012, 31(21): 54-61. (Yu Bo, Hong Hanping, Yang Lufeng. Influences of bidirectional seismic excitations and P-Δ effect on ductility demand [J]. Journal of Vibration and Shock, 2013, 31(21): 54-61.) (in Chinese)
[8] Yu B, Yang L F, Li B. P-Δ Effect on probabilistic ductility demand and cumulative dissipated energy of hysteretic system under bidirectional seismic excitations [J]. Journal of Engineering Mechanics, 2014, 141(4): 04014141(1-16).
[9] 翟长海, 公茂盛, 张茂花, 等. 工程结构等延性地震抗力谱研究[J]. 地震工程与工程振动, 2004, 24(1): 22-29. (ZHAI Changhai, GONG Maosheng, ZHANG Maohua etc. On Seismic resistance spectra of constant ductility of structures [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1): 22-29.) (in Chinese)
[10] 翟长海, 谢礼立, 张茂花. 阻尼对工程结构等延性地震抗力谱的影响分析[J]. 哈尔滨工业大学学报, 2007, 38(10): 1705-1708. (ZHAI Changhai, XIE Lili, ZHANG Maohua. Influence analysis of damping on constant ductility seismis resistance spectra for seismic design of structures [J]. Journal of Habin Institute of Technology, 2007, 38(10): 1705-1708.) (in Chinese)
[11] 翟长海, 谢礼立, 张茂花. 恢复力模型对等延性地震抗力谱的影响分析[J]. 哈尔滨工业大学学报, 2006, 38(8): 1228-1230. (ZHAI Changhai, XIE Lili, ZHANG Maohua. Influence analysis of hysteretic model on constant ductility seismic resistance spectra for seismic design of structures [J]. Journal of Habin Institute of Technology, 2006, 38(8): 1228-1230.) (in Chinese)
[12] 曲哲,叶列平,潘鹏. 建筑结构弹塑性时程分析中地震动记录选取方法的比较研究 [J],土木工程学报, 2011, 44(7): 10-21 (QU Zhe, YE Lieping, PAN Peng. Comparative study on methods of selecting earthquake ground motions for nonlinear time history analyses of building structures [J]. China Civil Engineering Journal, 2011, 44(7): 10-21.) (in Chinese)
[13] Goda K, Hong H P, Lee C S. Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior [J]. Journal of Earthquake Engineering, 2009, 13(5): 600-622.
[14] 周靖, 蔡健, 方小丹. 钢筋混凝土结构抗震强度折减系数的谱分析[J]. 华南理工大学学报 (自然科学版), 2006, 34(2):100-106. (ZHOU Jing, CAI Jian and FANG Xiaodan. Spectrum Analysis of Seismic Strength Reduction Factor for RC Building [J]. Journal of South China University of Technology, 2006, 34(2):100-106.) (in Chinese)
[15] 周靖, 蔡健, 方小丹. 剪切型结构的抗震强度折减系数研究[J]. 地震工程与工程振动, 2008, 28(2): 64-71. (ZHOU Jing, CAI Jian and FANG Xiaodan. Analysis of seismic strength reduction factors for shear type structure [J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(2): 64-71.) (in Chinese)
[16] 周靖, 蔡健, 方小丹. 剪切型多自由度结构体系抗震延性折减系数[J]. 振动工程学报, 2008, 20(3): 309-316. (ZHOU Jing, CAI Jian, FANG Xiaodan. Seismic ductility reduction factor for MDOF shear structures [J]. Journal of Vibration Engineering, 2008, 20(3): 309-316.) (in Chinese)
[17] Krawinkler H, Nassar A A. Seismic design based on ductility and cumulative damage demands and capacities, in nonlinear seismic analysis and design of reinforced concrete buildings [M]. Elsevier Applied Science, London, UK, 1992: 95-10.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}