刚性吊杆-水平抗风索耦合系统弯曲振动自振特性分析

赵洋1,2 徐凯2 汪志昊2 陈惟珍1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 92-99.

PDF(2053 KB)
PDF(2053 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (11) : 92-99.
论文

刚性吊杆-水平抗风索耦合系统弯曲振动自振特性分析

  • 赵洋1,2 徐凯2 汪志昊2 陈惟珍1
作者信息 +

Free flexural vibration analysis of a rigid hanger coupled with horizontal wind-resistant cables

  • Zhao Yang1,2    Xu Kai2    Wang ZhiHao2   Chen WeiZhen1
Author information +
文章历史 +

摘要

将1对水平抗风索对钢拱桥刚性吊杆的约束作用简化为4个水平弹簧支撑,推导了抗风索等效弹簧刚度计算公式;基于欧拉-伯努利连续梁理论与吊杆-水平抗风索连接位置处的相容连续性条件,建立了刚性吊杆-水平抗风索耦合系统弯曲振动自振特性分析理论模型,通过与有限元结果对比验证了该方法的准确性;明确了水平抗风索位置、刚度参数对H型、矩形刚性吊杆纵桥向弱轴弯曲振动自振特性的影响规律。研究结果表明:合理设计的抗风索对H型、矩形刚性吊杆弱轴弯曲基频均有较大程度的提升,证实了抗风索对刚性吊杆弯曲模态减振的可行性;抗风索位置不同,对吊杆弱轴弯曲基频的影响程度也不同,且位置参数直接决定了吊杆弯曲基频增长极限值;相对H型吊杆,附加抗风索的矩形吊杆弱轴弯曲基频提升潜力更大。研究成果对钢拱桥刚性吊杆弯曲模态振动控制的水平抗风索减振参数优化设计具有重要参考价值。

Abstract

The restriction effect generated by a pair of horizontal wind-resistant cables on a hanger were simplified as four equivalent springs. On this basis, the formula for equivalent stiffness generated by wind-resistant cables was deduced. Based on Bernoulli-Euler beam theory and compatibility conditions of a hanger on the connection with horizontal wind-resistant cables, a theoretical analysis model for free flexural vibration characteristics of a hanger coupled with horizontal wind-resistant cables was established. The accuracy of the theoretical model was then verified by finite element methods. Finally, the effects of locations and stiffness of horizontal wind-resistant cables on weak-axis flexural vibration characteristics of H-Section and rectangular rigid hangers were well investigated. It is shown that the fundamental weak-axis flexural frequencies of hangers are greatly enhanced by appropriate wind-resistant cables, which indicates that the wind-resistant cables are also feasible for flexural vibration control of rigid hangers. The incidence effect of wind-resistant cables on fundamental flexural frequencies of a hanger is not the same with different locations of wind-resistant cables, and the ultimate flexural frequencies of a hanger are directly determined by the location of wind-resistant cables. Comparing with H-Section hangers, rectangular hangers coupled with wind-resistant cables have more potential for promoting its first-order weak-axis flexural frequencies. The research results provide a valuable theoretical base for flexural vibration mitigation design of rigid hangers with horizontal wind-resistant cables. 

 

关键词

刚性吊杆 / 水平抗风索 / 等效弹簧 / 弯曲振动 / 自振频率 / 振型

Key words

rigid hanger / horizontal wind-resistant cable / equivalent spring / flexural vibration / natural frequency / mode shape

引用本文

导出引用
赵洋1,2 徐凯2 汪志昊2 陈惟珍1. 刚性吊杆-水平抗风索耦合系统弯曲振动自振特性分析[J]. 振动与冲击, 2017, 36(11): 92-99
Zhao Yang1,2 Xu Kai2 Wang ZhiHao2 Chen WeiZhen1. Free flexural vibration analysis of a rigid hanger coupled with horizontal wind-resistant cables[J]. Journal of Vibration and Shock, 2017, 36(11): 92-99

参考文献

[1] 马存明, 廖海黎, 郑史雄, 等. H型截面吊杆气动性能的风洞试验[J]. 中国铁道科学, 2005, 26(4): 42-46.
MA Cun-ming, LIAO Hai-li, ZHENG Shi-xiong, et al. Wind tunnel experiment on the aerodynamic performances of H-shaped booms [J]. China Railway Science, 2005, 26(4): 42-46.
[2] 周帅, 陈政清, 牛华伟. 矩形细杆涡振幅值和驰振性能的对比风洞试验[J]. 中国公路学报, 2014, 27(1): 64-75.
ZHOU Shuai, CHEN Zheng-qing, NIU Hua-wei. Comparative experiment on vortex-induced vibration amplitude and galloping of slender rectangular cylinder [J]. China Journal of Highway and Transport, 2014, 27(1): 64-75.
[3] Ding Y L, An Y H, Wang C. Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge [J]. Smart Structures and Systems, 2016, 17(6):1107-1127.
[4] Keller P, Higgins C, Lovejoy S C. Evaluation of torsional vibrations in steel truss bridge members [J]. Journal of Bridge Engineering-ASCE, 2015, 20(9): 04014102.
[5] 许福友, 丁威, 姜峰, 等. 大跨度桥梁涡激振动研究进展与展望[J]. 振动与冲击, 2010, 29(10): 40-49, 249
XU Fu-you, DING Wei, JIANG Feng, et al. Development and prospect of study on vortex-induced vibration of long-span bridges [J]. Journal of Vibration and Shock, 2010, 29(10): 40-49, 249.
[6] Chen Z Q, Liu M G, Hua X G, et al. Flutter, galloping, and vortex-induced vibrations of H-Section hangers [J]. Journal of Bridge Engineering-ASCE, 2012, 17(3): 500-508.
[7] 刘慕广,陈政清. 典型钝体断面大攻角下的颤振自激力特性[J]. 振动与冲击, 2013, 32(10): 22-25.
LIU Mu-guang, CHEN Zheng-qing. Characteristics of self-excited forces in flutter of typical blunt body under large attack angles [J]. Journal of Vibration and Shock, 2013, 32(10): 22-25.
[8] 刘慕广, 陈政清. 箱型吊杆的风致振动特性[J]. 工程力学, 2013, 30(3): 233-238.
LIU Mu-guang, CHEN Zheng-qing. Wind-induced vibration characteristics of box suspender [J]. Engineering Mechanics, 2013, 30(3): 233-238.
[9] 陈政清, 刘慕广, 刘光栋, 等. H型吊杆的大攻角风致振动和抗风设计[J]. 土木工程学报, 2010, 43(2): 1-11.
CHEN Zheng-qing, LIU Mu-guang, LIU Guang-dong, et al. Wind-induced vibration and wind-resistant design of H-Section hangers under large attack angles [J]. China Civil Engineering Journal, 2010, 43(2): 1-11.
[10] 李荣庆, 朱世峰, 李东超. 新型吊杆减振器(TLMD)在南京大胜关大桥中的应用[J]. 世界桥梁, 2012, 40(6): 68-72.
LI Rong-qing, ZHU Shi-feng, LI Dong-chao. Application of new type of TLMD to hangers of Dashengguan Changjiang River Bridge in Nanjing city [J]. World Bridges, 2012, 40(6): 68-72.
[11] 雷旭, 牛华伟, 陈政清, 等. 大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J]. 中国公路学报, 2015, 28(4): 60-68, 85.
LEI Xu, NIU Hua-wei, CHEN Zheng-qing, et al. Development and application of a new-type eddy current TMD for vibration control of hangers of long-span steel arch bridge [J]. China Journal of Highway and Transport, 2015, 28(4): 60-68, 85.
[12] Carl C. Aerodynamic lessons learned from individual bridge members [J]. Annals of the New York Academy of Sciences, 1980, 352(1): 265-281.
[13] Zhou H J, Yang X, Sun L M, et al. Free vibrations of a two-cable network with near-support dampers and a cross-link [J]. Structural Control and Health Monitoring, 2015, 22(9): 1173-1192.
[14] Izzi M, Caracoglia L, Noe S. Investigating the use of targeted-energy-transfer devices for stay-cable vibration mitigation [J]. Structural Control and Health Monitoring, 2016, 23(2): 315-332.
[15] Verniere de Irassar P L, Ficcadenti G M, Laura P A. Dynamic analysis of a beam with an intermediate elastic support [J]. Journal of Sound and Vibration, 1984, 96(3): 381-389.
[16] Shahba A, Rajasekaran S. Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials [J]. Applied Mathematical Modelling, 2012, 36(7): 3094-3111.
[17] Maiz S, Bambill D V, Rossit C A, et al. Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: Exact solution [J]. Journal of Sound and Vibration, 2007, 303(3): 895-908.
[18] Mohammadnejad M. New analytical approach for determination of flexural, axial and torsional natural frequencies of beams [J]. Structural Engineering and Mechanics, 2015, 55(3): 655-674.
[19] 郁殿龙, 温激鸿, 陈圣兵, 等. 轴向载荷周期结构梁的弯曲振动带隙特性[J]. 振动与冲击, 2010, 29(3): 92-95, 213.
YU Dian-long, WEN Ji-hong, CHEN Sheng-bing, et al. Flexural vibration band gaps in axially loaded periodic beam structure [J]. Journal of Vibration and Shock, 2010, 29(3): 92-95, 213.
[20] 崔灿, 蒋晗, 李映辉. 变截面梁横向振动特性半解析法[J]. 振动与冲击, 2012, 31(14): 85-88.
CUI Can, JIANG Han, LI Ying-hui. Semi-analytical method for calculating vibration characteristics of variable cross-section beam [J]. Journal of Vibration and Shock, 2012, 31(14): 85-88.
[21] Lin H P, Chang S C. Free vibration analysis of multi-span beams with intermediate flexible constraints [J]. Journal of Sound and Vibration, 2005, 281(1): 155-169.
[22] 四川省交通厅公路规划勘察设计研究院. 拱桥吊杆抗风减振构造[P]. 中国: CN201962594U, 2011-09-07.

PDF(2053 KB)

Accesses

Citation

Detail

段落导航
相关文章

/