虚部噪声辅助LCD方法及其在遥测振动信号处理中的应用

刘学

振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 1-6.

PDF(2918 KB)
PDF(2918 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 1-6.
论文

虚部噪声辅助LCD方法及其在遥测振动信号处理中的应用

  • 刘学
作者信息 +

Image Noise Assisted Local Characteristic Scale Decomposition method and its application in telemetry vibration signal processing

  • LIU Xue
Author information +
文章历史 +

摘要

针对局部特征尺度分解方法(Local Characteristic Scale Decomposition, LCD)的模态混叠以及集成局部特征尺度分解方法(Ensemble LCD, ELCD)在集成平均时容易引入新的模态混叠、伪分量和运算量大等问题,提出一种基于虚部噪声辅助局部特征尺度分解方法(Image Noise Assisted LCD, INALCD)。首先以原信号为实部添加虚部白噪声构成复数信号;然后对复数信号在指定方向上进行投影,求取对称投影象限的基函数,通过投影后虚部白噪声均匀化原信号投影的极值点的分布,辅助信号分解过程中极值点的选取,抑制模态混叠;最后将对称投影象限的基函数进行线性组合消除噪声的影响,避免了ELCD因集成平均带来的相关问题。仿真和实测数据实验结果表明,该方法在降低模态混叠的同时,大大减少了计算量,性能优于LCD和ELCD方法。

Abstract

In order to alleviate mode mixing in the Local Characteristic Scale Decomposition method, as well as solve the problem of the ensemble average always result in new mode mixing, illusive component, and computational cost increasing in ensemble LCD method, an image noise assisted LCD method is proposed, First, a complex signal is formed by the original signal as the real part and adding white noise as the imaginary part; Then the complex signal is projected in the specified direction to strike the basis functions of symmetrical projection quadrant. Through the projection of the imaginary part of white noise, the distribution of original signal extreme points are uniformed, the selection of extreme point is assisted in the decomposition; Finally, the quadrant projection is symmetrical linear combination of basis functions to eliminate the effects of noise, which can avoid the problems associated by ELCD due to ensemble average. Experimental results show that the method can reduce mode mixing, while greatly reducing the amount of calculation, superior to LCD and ELCD.

关键词

遥测振动信号 / 局部特征尺度分解方法 / 集成平均 / 模态混叠 / 投影 / 虚部噪声

Key words

 Telemetry vibration signal / LCD / Ensemble average / Mode mixing / Projection / Image noise

引用本文

导出引用
刘学. 虚部噪声辅助LCD方法及其在遥测振动信号处理中的应用[J]. 振动与冲击, 2017, 36(12): 1-6
LIU Xue. Image Noise Assisted Local Characteristic Scale Decomposition method and its application in telemetry vibration signal processing[J]. Journal of Vibration and Shock, 2017, 36(12): 1-6

参考文献

[1] HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J].Proceedings of the Royal Society of London, 1998,454(1):903-995.
[2] 黄林洲,郭兴明,丁晓蓉.EMD近似熵结合支持向量机的心音信号识别研究[J].振动与冲击,2012,31(19): 21-25.
HUANG Lin-zhou, GUO Xing-ming, DING Xiao-rong. Heart sound recognition based on EMD approximate entropy and SVM [J].Journal of Vibration and Shock,2012,31(19): 21-25.
[3] 程军圣,郑近德,杨宇.一种新的非平稳信号分析方法—局部特征尺度分解法[J].振动工程学报,2012, 25(2):215-220.
CHENG Junsheng, ZHENG Jinde, YANG Yu. A new non-stationary signal analysis approach the local characteristic scale decomposition method[J]. Journal of Vibration Engineering, 2012,25(2): 215-220.
[4] 郑近德,程军圣,聂永红等.完备总体平均局部特征尺度分解及其在转子故障诊断中的应用[J].振动工程学报,2014, 27(4):637-646.
ZHENG Jinde, CHENG Junsheng, NIE Yonghong, et al. Complete ensemble local characteristic scale decomposition and its applications to rotor fault diagnosis[J]. Journal of Vibration Engineering, 2014, 27(4): 637 -646.
[5] 郑近德,程军圣,杨宇.部分集成局部特征尺度分解:一种新的基于噪声辅助数据分析方法[J].电子学报,2013, 41(5):1030-1035.
ZHENG Jinde, CHENG Junsheng, YANG Yu. Partly Ensemble Local Characteristic-Scale Decomposition: A New Noise Assisted Data Analysis Method[J]. ACTA ELECTRICA SINICA, 2012,25(2): 215-220.
[6] YEH J R,SHIEH J S. Complementary ensemble empirical mode decomposition: A noise enhanced data analysis method [J].Advances in Adaptive Data Analysis, 2010, 2(2):135-156.
[7] TORRES M E, COLOMINAS M A,SCH- LOTTHAUER G, et al. A complete  Ensemble  Empirical  Mode  deco- mposition with adaptive noise[A]. IEEE  International Conference on Acoustics,Speech and Signal Processing. (ICASSP)[C].Prague (CZ),2011: 4144-4147.
[8] WU Z, HUANG N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J].Advances in Adaptive Data Analysis, 2009, 1( 1):1-41.
[9] RILLING G, FLANDRIN P,GONCALVES  P. On  empirical mode decomposition and its algorithms[A]. Proceedings of  IEEE EURASIP  Workshop on Nonlinear Signal and image Processing NSIP-03[C].Grado ( ltaly),June 2003.
[10] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J].Physical Review Letters, 2002, 88(17):174102-1 -174102-4.

PDF(2918 KB)

668

Accesses

0

Citation

Detail

段落导航
相关文章

/