机床横梁是机床的重要部件,横梁的刚性对机床的加工精度影响很大,为此,需要对横梁结构进行优化设计以获得良好的静、动态特性。文中设计了6种横梁筋板结构,初步筛选出4种筋板结构的横梁,并以横梁筋板结构、筋板厚度、上导轨支撑筋板倾斜角度为试验因素,以横梁质量、最大耦合变形、最大耦合应力、一阶固有频率为评价指标设计了三因素四水平的正交试验;采用灰色关联法和组合赋权法处理有限元分析数据,获得优化设计的最优参数组合。结果表明,横梁“井”型筋板结构,筋板厚度25mm,上导轨支撑筋板倾斜45°设计为最优方案,与原设计方案相比质量减轻了466kg,横梁总形变减少了7.36%,一阶固有频率提高了2.91%。拓展了正交试验、组合赋权-灰色关联法的应用范围,为其它机床零部件的设计提供了有益的方法参考。
Abstract
The crossbeam is an important part of machining tool, and the stiffness of crossbeam has great impact on machining accuracy, therefore, optimization design is necessary for the crossbeam to obtain its good static and dynamic characteristics. Six kinds of rib structure were designed and preliminary screened out four kinds of them. The orthogonal experimental method was carried out with three levels and four factors ,which took the crossbeam’s rib structure, the rib thickness, the angle of supporting ribs on guide-way as design variables, and took the crossbeam’s quality , the maximum coupling deformation, the maximum coupling stress, the first-order frequency as objective functions; Grey correlation method and the combination weighting method were used to the data processing of finite element analysis to obtain the optimal parameter combination. The results show that the crossbeam with "井" type rib structure, rib thickness of 25mm, the supporting ribs on guide-way tilted 45 ° is the optimal solution. Compared with the original design, the beam deformation reduced by 7.36% and the first-order frequency increased by 2.91%, while the quality reduced by 466kg. It expanded the applications of orthogonal experiment, grey correlation method and the combination weighting method, provided a useful method for the design of other machine parts.
关键词
机床横梁 /
优化设计 /
正交试验 /
组合赋权 /
灰色关联 /
有限元法
{{custom_keyword}} /
Key words
crossbeam of machine tool /
optimization design /
orthogonal experimental method /
combination weight /
grey relational analysis /
finite element method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 梁玉. 新常态、新发展-记2015机床制造业CEO国际论坛[J]. 制造技术与机床,2015, (6): 21-23.
LIANG Yu. New normal, new development—Report on International CEO Forum of Machine Tool Manufacturing Industry 2015[J]. Manufacturing Technology & Machine Tool, 2015, (6): 21-23.
[2] 谢黎明,李大明,沈浩,等. 基于有限元分析的现场铣床横
梁结构优化[J]. 组合机床与自动化加工技术,2008, (39): 37-39.
XIE Li-ming, LI Da-ming, SHEN Hao, et al. Optimization Design of scene Milling Machine Based on Finite Element Analysis[J], Modular Machine Tool & Automatic Manufacturing Technique, 2008, (39): 37-39.
[3] 唐振宇,李锻能. 大型龙门式加工中心横梁筋板设计与分析[J]. 机床与液压,2011, 39(22): 40-42.
TANG Zhen-yu, LI Duan-neng. Design and Analysis of Beam Stiffened Plates of Large Gantry Machine Center[J]. Machine Tool & Hydraulics, 2011,39(22):40-42.
[4] 候红玲,邱志惠,赵永强. 高速切削机床横梁的静态与动态分析[J]. 机械设计与制造,2006, (5): 38-39.
HOU Hong-ling, QIU Zhi-hui, ZHAO Yong-qiang. Static & dynamic analysis for beam of high-speed cutting machine tool[J]. Machinery Design & Manufacture, 2006, (5): 38-39.
[5] 王艳青,仲高艳,常永标,等. 大型五轴联动加工中心横梁结构的设计[J]. 机床与液压,2012, 40(13): 114-117.
WANG Yan-qing, ZHON Gao-yan, CHANG Yong-biao. Design of Beam Structures for Large Five-axis Machining Center[J]. Machine Tool & Hydraulics, 2012, 40(13): 114-117.
[6] 刘兴卓,喻鹏,苏文涛. 立式车铣中心横梁导轨的仿形设计和制造方法[J]. 机床与液压,2013, 41(14): 14-17.
LIU Xing-zhuo, YU Peng, SU Wen-tao. Copying Design and Manufacturing Approach of Crossrail Guideway Vertical Turning and Milling Center[J]. Machine Tool & Hydraulics, 2013, 41(14): 14-17.
[7] 王宇清,曹忠亮. 大型铣床横梁模态分析及装配改进方法研
究[J]. 制造技术与机床,2014, (9): 137-139.
WANG Yu-qing, CAO Zhong-liang. Research on large milling beam modal analysis and improved assembling[J]. Manufacturing Technology & Machine Tool, 2014, (9): 137-139.
[8] 张森,杨玉萍,邱自学,等. 基于灵敏度分析的龙门加工中
心横梁轻量化设计[J]. 机械设计,2015, 32(4): 110-115.
ZHANG Sen, YANG Yu-ping, QIU Zi-xue, et al. Lightweight design for crossbeam of gantry machining-center based on sensitivity analysis[J]. Journal of Machine Design, 2015, 32(4):110-115.
[9] 王岩,隋思涟. 试验设计与MATLAB数据分析[M]. 北京:清华大学出版社,2012.
[10] 孙鹏霄. 灰色关联方法的分析与应用[J]. 数学的实践与认
识,2014, 44(1): 97-101.
SUN Peng-xiao. Analysis and Application of Gray Correlation Method[J]. Mathematics in Practice and Theory, 2014, 44(1): 97-101.
[11] 张炳江. 层次分析法及其应用案例[M]. 北京:电子工业出版社,2014.
[12] 唐兴中,蓝明新,经建芳,等. 基于组合赋权—灰色关联投影法的润滑配方优选[J]. 润滑与密封,2014, 39(6): 108-111.
TANG Xing-zhong, LAN Ming-xin, JING Jian-fang, et al. Optimization of Lubricant Formulation Based on Combination Weight-Grey Relation Projection Method[J]. Lubrication Engineering, 2014, 39(6): 108-111.
[13] 刘思峰,蔡华,杨英杰,等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践,2013, 33(8): 2041-2044.
LIU Si-feng, CAI Hua, YANG Ying-jie, et al. Advance in grey incidence analysis modeling[J]. Systems Engineering—Theory & Practice, 2013, 33(8): 2041-2044.
[14] 刘世豪,叶文华,陈蔚芳,等. 基于正交试验和灰色关联的机床主轴箱优化设计[J]. 振动与冲击,2011, 30(7): 127-132.
LIU Shi-hao, YE Wen-hua, CHEN Wei-fang, et al. Optimizaton design for headstock of machine tool based on orthogonal experimental method and grey relational analysis[J]. Journal of Vibration and Shock, 2011, 30(7): 127-132.
[15] 宋明顺,黄佳,张士朋,等. 多指标正交试验设计去量纲准则及方法研究[J]. 工业工程与管理,2014, 19(1): 41-46.
SONG Ming-shun, HUANG Jia, ZHANG Shi-peng, et al. The Research on th Dimensionless Criterion and Methods about the
Design of Multi-index Orthogonal Experiment[J]. Industrial Engineering and Management, 2014, 19(1): 41-46.
[16] 孙晓东,焦玥,胡劲松. 基于组合权重的灰色关联理想解
法及应用[J]. 工业工程与管理,2006, (1): 62-66.
SUN Xiao-dong, JIAO Yue, HU Jin-song. Grey Correlation Based on Combinational Weight and Its Application[J]. Industrial Engineering and Management, 2006, (1): 62-66.
[17] 苏劲,袁智,侍玉苗,等. 水力旋流器细粒分离效率优化与数值模拟[J]. 机械工程学报,2011, 47(20): 183-188.
SU Jing, YUAN Zhi, SHI Yu-miao, et al. Separation Efficiency Optimization of Liquid-solid Hydroclone and Numerical Simulation[J]. Journal of Mechanical Engineering, 2011, 47(20): 183-188.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}