波流与不均匀海域上浮式弹性板相互作用的非线性数值模拟

程勇1,嵇春,1,翟钢,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 112-121.

PDF(2044 KB)
PDF(2044 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 112-121.
论文

波流与不均匀海域上浮式弹性板相互作用的非线性数值模拟

  • 程勇1,嵇春,1,翟钢,2
作者信息 +

Nonlinear numerical simulation for wave-current interaction with floating elastic plate over variable depth sea-bottom

  • Yong Chenga1, Chunyan JI1, Gangjun Zhai2
Author information +
文章历史 +

摘要

波流混合作用下浮式弹性板的水弹性响应属于非线性范畴,尤其当波流传递到不均匀海底时,这种非线性行为更为复杂,因而采用完全非线性分析技术是唯一可能获得浮板精确水弹性响应的方法。采用高阶边界元法建立模拟波流与变水深海底上浮板相互作用的时域完全非线性二维数值水槽。将Euler-Bernoulli-von Karman非线性梁模型加入到流固交界面的动力学边界条件中实现波流与浮板耦合作用,运用4阶Runge-Kutta法并联合混合欧拉-拉格朗日方案对瞬时自由水面和流固交界面进行更新。为了获得浮板位移的空间各阶导数,使用一系列模态振型函数来近似当前时刻浮板的垂向位移,并利用Galerkin 方法求解各阶模态主坐标。通过与无网格数值已知算法结果进行比较,验证了数值模型的可行性和准确性;进一步研究水流及不均匀海底的存在对浮板非线性水弹性响应产生的影响;最后探讨了不同流速对浮板高阶谐位移的影响规律。

Abstract

Hydroelastic analysis of wave-current nonlinear interaction with floating elastic plate is a complex task, especially when water waves propagate along the uneven sea-bottom. Therefore, the fully nonlinear analysis techniques are widely recognized as the unique approach to predict the accurate hydroelastic responses. A 2D (two-dimensional) time domain fully nonlinear numerical tank using higher-order boundary element method is devoted to solve such a problem. The fourth-order Runge-Kutta time stepping integration scheme with the Mixed Eulerian-Lagrangian approach is applied to update the instantaneous free and plate surface. An Euler-Bernoulli-von karman nonlinear beam model is introduced to determine the fluid pressure imposed on the fluid-structure interface. In order to obtain derivatives of plate surface, the plate displacement is interpolated using a series of modal functions, and the modal amplitudes are solved by applying the Galerkin scheme. The numerical solutions are validated against existing meshless numerical results. Further calculations are then conducted to examine the effects of currents and the uneven topography on the displacement nonlinearity of the plate. Finally, the higher harmonic displacements are investigated with the various current velocities.

关键词

浮式弹性板 / 高阶边界元方法 / 时域完全非线性 / 水弹性响应 / 波流混合作用 / 不匀均海底

Key words

 floating elastic plate / higher-order boundary element method / time domain fully nonlinear / hydroelastic responses / wave-current interaction / uneven sea-bottom

引用本文

导出引用
程勇1,嵇春,1,翟钢,2. 波流与不均匀海域上浮式弹性板相互作用的非线性数值模拟[J]. 振动与冲击, 2017, 36(12): 112-121
Yong Chenga1, Chunyan JI1, Gangjun Zhai2. Nonlinear numerical simulation for wave-current interaction with floating elastic plate over variable depth sea-bottom[J]. Journal of Vibration and Shock, 2017, 36(12): 112-121

参考文献

[1] 崔维成. 超大型海洋浮式结构物水弹性响应预报的研究现状和发展方向[J]. 船舶力学,2002,6(11): 73-90.
Cui Wei-cheng. Current status and future direction in predicting the hydroelastic response of very large floating structures[J]. Journal of Ship Mechanics,2002,6(11):73-90.
[2] Wu C, Watanabe E, Utsunomiya T. An eigenfunction expansion-matching method for analyzing the wave-induced responses of an elastic floating plate[J]. Applied Ocean Research, 1995, 17:301-310.
[3] Riyansyah M, Wang C M, Choo Y S. Connection design for two-floating beam system for minimum hydroelastic response. Marine Structures, 2010, 23:67-87.
[4] Karmakar D, Soares C G. Scattering of gravity waves by a moored finite floating elastic plate. Applied Ocean Research,  2012, 34:135-149.
[5] 翟钢军,程勇,马哲. 超大型浮式储油船的水弹性响应预报[J]. 振动与冲击,2014,33(1):141-148.
   Zhai Gang-jun, Cheng Yong, Ma Zhe. Hydroelastic response prediction of very floating oil storage vessel[J]. Journal of vibration and shock, 2014, 33(1):141-148.
[6] Zhao C B, Hao X C, Liang R F, Lu J X. Influnce of hinged conditions on the hydroelastic response of compound floating structures[J]. Ocean Engineering, 2015, 101:12-24.
[7] Watanabe E, Utsunomiya T, Tanigaki S. A transient response analysis of a very large floating structure by finite element method[J]. Structural Eng./Earthquake Eng., JSCE 1998, 15(2):155-163.
[8] Qiu L C, Liu H. Transient hydroelastic response of VLFS by FEM with impedance boundary conditions in time domain[J]. China Ocean Engineering, 2004, 19(1):1-9.
[9] Qiu L C, Liu H. Time domain simulation of transient responses of very large floating structures under unsteady external loads[J]. China Ocean Engineering, 2005, 19(3): 365-374.
[10] Kashiwagi M. A time-domain mode-expansion method for calculating transient elastic responses of a pontoon-type VLFS[J]. Journal of Marine Science and Technology, 2000, 5: 89-100.
[11] Kashiwagi M. Transient response of a VLFS during landing and take-off of an airplane[J]. Journal of Marine Science and Technology, 2004, 9:14-23.
[12] Endo H. The behavior of a VLFS and an airplane during takeoff/landing run in wave condition[J]. Marine Structures, 2000, 13:477-491.
[13] Cheng Y, Zhai G J, Ou J P. Time-domain numerical and experimental analysis of hydroelastic response of a very large floating structure edged with a pair of submerged horizontal plates[J]. Marine Structures, 2014, 39:198-224.
[14] 陈徐均,吴有生,崔维成,孙芦忠. 海洋浮体二阶非线性水弹性力学分析-系泊浮体主坐标响应的频率特征[J]. 船舶力学, 2002, 6(5):44-57.
    Chen Xu-jun, Wu You-sheng, Cui Wei-cheng, Sun Lu-zhong. Second order nonlinear hydroelastic analyses of floating bodies-frequency characteristics of the principal coordinates of a moored floating body [J]. Journal of Ship Mechanics, 2002, 6(5):44-57.
[15] 陈徐均,崔维成,J.Juncher Jensen,汤雪峰. 海洋浮体非线性水弹性力学分析-结构非线性的初步考虑[J]. 船舶力学,2003, 7(5):81-90.
    Chen Xu-jun, Cui Wei-cheng, J.Juncher Jensen, Tang Xue-feng. Second order nonlinear hydroelastic analyses of floating bodies-the primary consideration of nonlinear structure [J]. Journal of Ship Mechanics, 2003, 7(5):81-90.
[16] Liu X D, Sakai S. Time domain analysis on the dynamic response of a flexible floating structure to waves[J]. Journal of Engineering Mechanics, 2002, 128(1):48-56.
[17] Kyoung J H, Hong S Y, Kim B W. FEM for time domain analysis of hydroelastic response of VLFS with fully nonlinear free-surface conditions[J]. International Journal of Offshore and Polar Engineering, 2006, 16(3):168-174.
[18] Moollazadeh M, Khanjani M J, Tavakoli A. Applicability of the method of fundamental solutions to interaction of fully nonlinear water waves with a semi-infinite floating ice plate[J]. Cold Region Science Technology, 2011, 69(1):52-58.
[19] Mirafzali F, Tavakoli A, Mollazadeh M. Hydroelastic analysis of fully nonlinear water waves with floating elastic plate via multiple knot B-splines[J]. Applied Ocean Research, 2015, 51:171-180.
[20] 陈丽芬,宁德志,滕斌,宋伟华. 潜堤上波流传播的完全非线性数值模拟[J]. 力学学报, 2011, 43(5):834-843.
    Chen Li-fen, Ning De-zhi, Teng Bin, Song Wei-hua. Fully nonlinear numerical simulation for wave-current propagation over a submerged bar[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(5):834-843.
[21] Reddy J N. An introduction to the finite element method, Third edition[M]. McGraw-Hill, New York, 2005.
[22] Newman J N. Wave effects on deformable bodies[J]. Applied Ocean Research, 1994, 16:47-59.

PDF(2044 KB)

1377

Accesses

0

Citation

Detail

段落导航
相关文章

/