针对压电-电磁复合动能采集器的物理参数模型难以提供统一的性能比较标准,以及最大输出功率及最优负载直接求解困难等问题,本文通过引入无量纲参数建立了采集器的无量纲参数模型,理论推导了归一化输出功率,并采用遗传算法求解了最大输出功率及最优负载;数值分析了无量纲参数对采集器性能的影响,并实验验证了模型和遗传算法求解的正确性。结果表明:(1)减小线圈负载可提升性能;(2)增大机械品质因子将提高频率选择能力;(3)当压电和电磁均为弱耦合作用时,性能受二者共同影响,且在二者匹配时获得最优;(4)当电磁为强耦合作用时,性能基本只受电磁端影响,且随其增强而不断趋近最优;(5)压电-电磁双耦合机制可增大采集器的最优负载范围。
Abstract
In order to establish a unified performance comparison standard and obtain the maximum output power and the corresponding optimal loads for a piezoelectric–electromagnetic hybrid vibration energy harvester, a generalized dimensionless parameter model is introduced to address this problem. The expression of the theoretical normalized output power is derived, and the maximum value and the optimal loads are obtained based on genetic algorithm; the relations between the dimensionless parameters and the performance of the harvester are analyzed by numerical simulations, and the feasibility of the model and genetic algorithm for this topic are confirmed by the experiment. The results show: (1) reducing coil resistance can improve the performance; (2) improving mechanical quality factor can increase the frequency-selective; (3) the performance is co-determined by piezoelectric and electromagnetic when the two effects are weak coupling, and the best performance is obtained at their matching point; (4) the performance is almost determined by electromagnetic when it is strong coupling, and it increases to the ultimate performance with the increase of electromagnetic effect; (5) the optimal load range is increased by using the piezoelectric–electromagnetic dual-coupling mechanisms.
关键词
能量采集 /
压电-电磁 /
无量纲参数模型 /
遗传算法
{{custom_keyword}} /
Key words
energy harvesting /
piezoelectric-electromagnetic /
dimensionless parameter model /
genetic algorithm
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Poulin G, Sarraute E, Costa F. Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system[J]. Sensors and Actuators A: Physical, 2004,116(3):461-471.
[2] Challa V R, Prasad M G, Fisher F T. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching[J]. Smart materials and Structures, 2009, 18(9): 095029.
[3] Shan X B, Xu Z L, Song R J, et al. A New Mathematical Model for a Piezoelectric-Electromagnetic Hybrid Energy Harvester[J]. Ferroelectrics, 2013,450(1):57-65.
[4] Wang H Y, Tang L H, Guo Y, et al. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. A Journal of Zhejiang University SCIENCE A, 2014,15(9):711-722.
[5] Li P, Gao S Q, Niu S H, et al. An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester[J]. Smart Materials and Structures, 2014,23(6): 065016.
[6] 蔡华通,高世桥,李平,王华敏. 压电-电磁复合式俘能器的设计与实验研究[J]. 压电与声光, 2015,37(2):248-253.
CAI Hua-tong, GAO Shi-qiao; LI Ping, et al. Design and experimental study of hybrid piezoelectric and electromagnetic harvester[J]. Piezoelectrics and Acoustooptics, 2015, 37(2): 248-253.
[7] Williams C B, Shearwood C, Harradine M A, et al. Development of an electromagnetic micro-generator[C] Circuits, Devices and Systems, IEE Proceedings-. IET, 2001, 148(6): 337-342.
[8] Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2005,52(4):584-595.
[9] Wang X, Lin L. Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits[J]. Smart Materials and Structures, 2013, 22(8): 085011.
[10] John Henry Holland. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. MIT press, 1992.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}