基于马田系统的滚动轴承初始故障检测和状态监测

剡昌锋1 朱涛1 吴黎晓1 贝克1 郭剑锋2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 155-162.

PDF(1885 KB)
PDF(1885 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 155-162.
论文

基于马田系统的滚动轴承初始故障检测和状态监测

  • 剡昌锋1  朱涛1  吴黎晓1  贝克1   郭剑锋2
作者信息 +

Incipient fault detection and condition monitoring of rolling bearings by using Mahalanobis-Taguchi System

  • YAN Chang-feng1  ZHU Tao1  WU Li-xiao1  Ahmed Y.Y1   GUO Jianfeng2
Author information +
文章历史 +

摘要

针对轴承寿命的四个阶段中振动信号特征参数的变化灵敏度不同,分析了特征参数对初始故障的敏感性和退化状态的相关性,提出了一种采用马田系统检测轴承初始故障和区分性能退化状态的方法。以对初始故障敏感和对退化状态相关的特征参数建立了马田系统的基准空间,并在马田系统中将两组特征参数融合为单一的特征参数马氏距离。由于MD1对滚动轴承初始故障的敏感性,检测轴承寿命在第一和第二阶段时出现初始故障的时间点。由于MD2随着滚动轴承性能退化状态而不断增大,依据其变化趋势判断轴承的退化状态。该方法避免了单一特征参数在不同运行环境中的不确定性和不稳定性,可以准确的检测出轴承的初始故障和判断轴承的退化状态。通过两组滚动轴承加速寿命试验,验证了该方法的有效性和准确性。

Abstract

Because the sensitivity of feature parameters of vibration signal are different with the four stage of bearing life, the sensitivity to incipient fault and the correlation of degradation condition are analyzed. A new method of incipient fault detection and performance degradation is presented by Mahalanobis-Taguchi System(MTS). The feature parameters which are sensitive to incipient fault and related performance degradation condition are regarded as a reference space for Mahalanobis-Taguchi System(MTS). Two groups of feature parameters are fused with single feature parameters in MTS of Mahalanobis distance. Since MD1 is more sensitive to incipient fault of bearings, it is used to detect the time of incipient fault during the first and second stages of bearing life. According to MD2 increasing with performance degradation, the degradation state of bearings is estimated by variation tendency. By using this method, the uncertainty and instability of single feature parameters can be avoided in different running condition. The incipient fault is also detected accurately and degradation condition of bearings life is distinguished. The validity and accuracy of this method are verified by the service life of rolling bearing in accelerated life test.

关键词

马田系统 / 滚动轴承 / 初始故障 / 状态监测 / 相关性

Key words

Mahalanobis-Taguchi System (MTS) / rolling bearing / incipient fault / condition monitoring / correlation

引用本文

导出引用
剡昌锋1 朱涛1 吴黎晓1 贝克1 郭剑锋2. 基于马田系统的滚动轴承初始故障检测和状态监测[J]. 振动与冲击, 2017, 36(12): 155-162
YAN Chang-feng1 ZHU Tao1 WU Li-xiao1 Ahmed Y.Y1 GUO Jianfeng2. Incipient fault detection and condition monitoring of rolling bearings by using Mahalanobis-Taguchi System[J]. Journal of Vibration and Shock, 2017, 36(12): 155-162

参考文献

[1] Jay Lee, Wu Fangji, Zhao Wenyu, et al. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications [J]. Mechanical Systems and Signal Processing, 2014, 42(1-2): 314–334.
[2] 佟佩声. 滚动轴承变工况条件下静电监测特征提取及故障程度识别方法研究[D]. 南京:南京航空航天大学,2014.
Tong Peisheng. Electrostatic monitoring feature extraction and fault severity assessment methods for rolling bearing based on variable operating condition[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[3] M. S. Patil, Jose Mathew, P. K. RajendraKumar. Bearing signature analysis as a medium for fault detection a review[J]. Journal of Tribology, 2007,130(1), 14001–14007.
[4] Zhao Xiaomin, Zuo Ming J, Tejas Patel. EMD, ranking mutual information and PCA based condition monitoring [J]. Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2010 .
[5] Piyush Shakya, Makarand S. Kulkarni, Ashish K. Darpe. A novel methodology for online detection of bearing health status for naturally progressing defect [J]. Journal of Sound and Vibration, 2014, 333(21): 5614–5629.
[6] Piyush Shakya, Makarand S. Kulkarni, Ashish K. Darpe. Bearing diagnosis based on Mahalanobis–Taguchi–Gram–Schmidt method. Journal of Sound and Vibration, 2015, 337: 342–362.
[7] Yu Jianbo. Health condition monitoring of machines based on hidden markov model and contribution analysis [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(8): 2200-2211.
[8] Wang Zhipeng, Lu Chen, Wang Zili, et al. Fault diagnosis and health assessment for bearings using the Mahalanobis-Taguchi system based on EMD-SVD [J]. Transactions of the Institute of Measurement and Control, 2013, 35(6): 798–807.
[9] 余发军,周凤星,严保康. 基于字典学习的轴承早期故障稀疏特征提取[J]. 振动与冲击,2016,35(6): 181-186.
YU Fa-jun, ZHOU Feng-xing, YAN Bao-kang, Bearing initial feature extraction via sparse representation based on dictionary learning. Journal of Vibration and Shock, 2016, 35(6): 181-186.
[10] Reuben Lim, Chi Keong, David Mba. Bearing time-to-failure estimation using spectral analysis features [J]. Structural Health Monitoring, 2014, 13(2): 219-230.
[11] Hu Jinqiu, Zhang Laibin, Liang Wei. Dynamic degradation observer for bearing fault by MTS–SOM system. Mechanical Systems and Signal Processing, 2013, 36 (2): 385–400.
[12] A Soylemezoglu,S Jagannathan,C Saygin. Mahalnobis Taguchi System, (MTS) as a prognostic tool for rolling element bearing failures. Journal of Manufacturing Science & Engineering, 2010, 132(5):635-645
[13] Shen Zhongjie, He Zhengjia, Chen Xuefeng, et al. A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time [J]. Sensors, 2012, 12(8): 10109-10135.
[14] Zhu Xiaoran, Zhang Youyun, Zhu Yongsheng. Bearing performance degradation assessment based on the rough support vector data description [J]. Mechanical Systems and Signal Processing, 2013, 34 (1-2): 203–217.
[15] Yan Changfeng, You Li, Kong Yuanyuan, et al. A hybrid method to estimate initial faulty time of rolling bearing [J]. International Conference on Control System and Automation, 2013, 08(09): 474-480.
[16] Myeongsu Kang, Jaeyoung Kim, Jong-Myon Kim. Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm [J]. Information Sciences, 2015, 294(2015): 423–438.
[17] Amit R. Bhende, Gajanan K. Awari, Sachin P. Untawale. Comprehensive bearing condition monitoring algorithm for incipient fault detection using acoustic emission [J]. Jurnal Tribologi, 2014, 2 (2014): 1-30.
[18] Wang Zhipeng, Wang Zili, Tao Laifa, et al. Fault diagnosis for bearing based on Mahalanobis-Taguchi System [J]. 2012 Prognostics and System Health Management Conference, 2012.
[19] Elham, Abdollah. Mahalanobis Taguchi system: a review [J]. Emerald Insight, 2015, 32(3): 291-307.
[20] 任江涛,蔡远文,史建伟,等. 基于马田系统的设备健康监测技术研究[J]. 计算机测量与控制,2012,20(3): 634-641.
Ren Jiangtao, Cai Yuanwen, Shi Jianwei, et al. Research on equipment health monitoring using Mahalanobis-Taguchi System [J]. Computer Measurement and Control, 2012, 20(3): 634-641.
[21] 何正嘉,陈进,王太勇,等. 机械故障诊断理论及其应用[M]. 北京:高等教育出版社,2010.
He Zhengjia, Chen Jin, Wang Taiyong, et al. Theories and applications of machinery fault diagnostics [M]. Beijin: Higher education press, 2010.
[22] Brian P. Graney, Ken Starry. Rolling element bearing analysis[J]. Materials Evaluation, 2011, 70(1): 78-85.
[23] P. Nectoux, R. Gouriveau, K. Medjaher, et al. PRONOSTIA: An experimental platform for bearings accelerated life test [J]. IEEE International Conference on Prognostics and Health Management, 2012.
[24] J. Lee, H. Qiu, G. Yu, et al. Rexnord Technical Services: Bearing Data Set [EB/OL].
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/, 2007.

PDF(1885 KB)

410

Accesses

0

Citation

Detail

段落导航
相关文章

/