为了能够利用自然界中的振动能量,弥补传统微器件供能方式的不足。本文设计制作了一种以超磁致伸缩材料(GMM)为基础的振动能量收集装置,并通过实验加以验证其能量收集特性。首先,通过对超磁致伸缩材料物理特性的分析,进行了能量收集装置理论建模与仿真分析;然后,根据仿真分析的结果设计了一套柱棒式的超磁致伸缩能量收集器;最后,通过搭建实验平台进行了效果验证。实验结果表明:当输入激振信号频率f_n不变,振动能量收集装置输出电压峰-峰值和输入振动信号的幅值F_m成正比;当输入振动信号幅值F_m不变,振动能量收集装置输出电压峰-峰值和输入激振信号的频率f_n成正比。在激振应力最大值为2.54MPa、频率100Hz的正弦激振条件下,感应线圈100匝的实验条件下,超磁致伸缩振动能量收集器输出电动势峰-峰值为136.4mV,与理论值(156mV)符合较好,且波形一致。
Abstract
In order to make use of the vibration energy from nature and make up for the inadequacy of traditional way to power the micro device. In this paper, a kind of vibration energy harvester based on giant magnetostrictive material (GMM) has been designed, and through experiment its energy collection features have also been verified. First, based on the analysis of the physical properties of GMM, the modeling and simulation of energy harvest device has been analyzed. And then, according to the results of simulation analysis to design a set of columnclaviform giant magnetostrictive energy harvester. Finally, an experimental platform has been established to verify the effect of the design. Experimental results indicate that when the frequency of input excitation signal f_n is constant the peak-to-peak value of output voltage of the device is directly proportional to the amplitude of input vibration signalF_m. When the amplitude of input vibration signal F_m is constant the peak-to-peak value of output voltage of the device is directly proportional to the frequency of input excitation signal f_n as well. When the maximum of the vibration stress is 2.54MPa, the sinusoidal vibration frequency is 100Hz and the turns of induction coil is 100 the peak-to-peak value of output electromotive force of the device is 136.4mV. This result is better in line with the theoretical value(156mV) and the waveform is consistent as well.
关键词
振动 /
能量收集 /
超磁致伸缩材料
{{custom_keyword}} /
Key words
Vibration /
Energy harvester /
Giant magnetostrictive material
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙明慧. 磁致伸缩换能器的结构设计和磁场分析及实验研究[D]. 河北: 河北工业大学, 2014: 2-10.
SUN Minghui. Structural design and magnetic field analysis of magnetostrictive transducer as well as its experiment [D]. Hebei: Dissertation Submitted to Hebei University of Technology, 2014: 2-10.
[2] 侯志伟,陈仁文,刘祥建.多方向压电振动能量收集装置及其优化设计[J].振动与冲击, 2012,(16): 33-37.
HOU Zhiwei, CHEN Renwen, LIU Xiangjian. Optimization design of multi-direction piezoelectric vibration energy harvester [J]. Journal of Vibration and Shock, 2012,(16): 33-37.
[3] 王博文,曹淑瑛,黄文美.磁致伸缩材料与器件[M].北京:冶金工业出版社, 2008.
WANG Bowen, CAO Shuying, HUANG Wenmei. Magnetostrictive materials and devices [M]. Beijing: Metallurgical industry press, 2008.
[4] Adly A, Davino D, Giustiniani A, et al. Experimental tests of a magnetostrictive energy harvesting device toward its modeling[J]. Journal of Applied Physics, 2010, 107(9):09A935 - 09A935-3.
[5] Ueno T. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications[J]. Journal of Applied Physics, 2015, 117(17): 1416-1421.
[6] Fujieda, S, Suzuki, S, Minato, A, et al. Growth of Fe-Ga Alloy Single Crystals by the Czochralski Method and Their Application to Vibration Power Generator[J]. IEEE Transactions on Magnetics, 2014, 50(11):1-4.
[7] Ueno T, Yamada S. Performance of Energy Harvester Using Iron–Gallium Alloy in Free Vibration[J]. Magnetics IEEE Transactions on, 2011, 47(10):2407-2409.
[8] 郭岩. 基于磁致伸缩材料的振动能量采集研究[D].河北: 河北工业大学, 2014: 11-13.
GUO Yan. Research on vibration energy harvesting based on magnetostrictive materials [D]. Hebei: Dissertation Submitted to Hebei University of Technology, 2014: 11-13.
[9] L.Wang, F.G.Yuan. Vibration energy harvesting by magnetostrictive material[J]. Smart Materials and Structures, 2008, 17(04):1-14.
[10] Jiles D C. Theory of the magnetomechanical effect[J]. Journal of Applied Physics, 1995, 28(8): 1537-1546.
[11] Jiles D C, J. B. Thoelke, M. K. Devine. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans. on Mag. 1992, 28(1):27-35.
[12] S. X. Dong, J. F. Li, D. Viehland. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(10): 1253-1261.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}