提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewart隔振平台进行动力学建模,并通过FEM方法进行验证,给出内嵌反馈控制的隔振平台模型,对反馈控制效果进行仿真验证。在仿真分析的基础上,对隔振平台的被动隔振性能和内嵌反馈控制的主动隔振性能进行实验,结果表明,被动隔振在30-200Hz频段内具有约-36dB/dec的衰减率,主动隔振在3-100Hz频段内可获得最大20dB的幅值衰减,在200Hz内,支腿力RMS值控制后下降75-80%。
Abstract
A Stewart platform of cubic configuration was presented for hybrid passive/active vibration isolation. In the platform, the six struts are connected with the base and the payload through spherical joints lubricated by graphite, and each strut comprises a voice coil actuator and a force transducer. The Stewart platform was treated as an elastic system and an FRF (frequency response function) model was built by using the FRF-based substructure synthesis method. This model was validated by the finite element method and used in subsequent simulation. Vibration isolation with embedded feedback was analyzed and the effectiveness was evaluated. Experiments were also conducted to verify the hybrid passive/active vibration isolation performance. The results demonstrated that the passive isolation has approximately -36dB/dec attenuation rate in the frequency range of 30-200Hz, and the active isolation can achieve a maximum attenuation of 20dB in the frequency range of 3-100Hz, moreover, the RMS values of dynamic forces in the struts were reduced by about 75-80% within 200Hz.
关键词
Stewart平台 /
主动隔振 /
频响函数综合 /
子结构 /
球铰 /
音圈作动器
{{custom_keyword}} /
Key words
Stewart platform /
Active vibration isolation /
Frequency response function synthesis /
Substructure /
Spherical joint /
Voice coil actuator
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Huang Xiuchang, Sun Jingya, Hua Hongxing, Zhang Zhiyi. Modeling and Optimization of Octostrut Vibration Isolation Platform by FRF-Based Substructuring Method[J]. Journal of Aerospace Engineering. 2015, 28(3), 04014084.
[2] Preumont, A., et al., A six-axis single-stage active vibration isolator based on Stewart platform. Journal of sound and vibration, 2007. 300(3): p. 644-661.
[3] Spanos, J., Z. Rahman, and G. Blackwood. A soft 6-axis active vibration isolator. in American Control Conference, Proceedings of the 1995. 1995. IEEE.
[4] Doug Thayer, Mark Campbell, and Juris Vagners. Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors[J]. Journal of Spacecraft and Rockets. 39(2): 206-212.
[5] Zhang Yao, Zhang Jingrui. Parameters design of vibration isolation platform for control moment gyroscopes[J]. Acta Astronautica. 2012: 645-659.
[6] Eric H.Anderson, Michael F.cash, Paul C.Janzen, et al. Precision, Range, Bandwidth and Other Tradeoffs in Hexapods with Application to Large Ground Based Telescopes[C]. Astronomical Telescopes and Instrumentation 2006: Technology Advancements. Orlando,FL. May, 2006.
[7] Antonio M. Lopes. Dynamic modeling of a Stewart platform using the generalized momentum approach[J]. Commun Nonlinear Sci Numer Simulat. 2009: 3389-3401.
[8] B. Dasgupta, T. S. Mruthyunjaya. A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator[J]. Mechanism and Machine Theory. 1998, 33(8): 1135-1152.
[9] B. Dasgupta, T. S. Mruthyunjaya. Closed-Form Dynamic Equations of the General Stewart Platform through Newton-Euler Approach[J]. Mechanism and Machine Theory. 1998, 33(7): 993-1012.
[10] Lee J. D. and Geng Z. A Dynamic Model of a Flexible Stewart Platform[J]. Computers & Structures. 1993, 48(3): 367~374.
[11] 郭洪波. 液压驱动六自由度平台的动力学建模与控制[D]. 哈尔滨: 哈尔滨工业大学. 2006.
Guo Hongbo. Dynamic modeling and control of hydraulically driven 6-dof platform[D]. Harbin: Harbin Institute of Technology. 2006.
[12] Wang J. G. and Gosselin C. M. A New Approach for the Dynamic Analysis of Parallel Manipulators[J]. Multibody System Dynamics. 1998, 2: 317~334.
[13] Liu M. J., Li C. X. and Li C. N. Dynamics Analysis of the Gough-Stewart Platform Manipulator[J]. IEEE Transactions on Robotics and Automation. 2000, 16(1): 94~98.
[14] 傅志方, 华宏星. 模态分析理论与应用[M]. 上海: 上海交通大学出版社, 2000.
Fu Zhifang, Hua Hongxing. Modal Analysis Theory and Application[M]. Shanghai: Shanghai Jiaotong University Press, 2000.
[15] 芮筱亭. 多体系统传递矩阵法及其应用[M]. 北京: 科学出版社, 2008.
Rui Xiaoting. Transfer Matrix Method of Multibody System and its Applications[M]. Beijing: Science Press, 2008.
[16] A. Preumont, M. Horodinca, I. Romanescu, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration. 2007: 644-661.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}