为了保持动静压轴承支承电主轴的服役精度,提出采用电磁力消减静动态加工力的方案并研制了一套磁力减载系统。以磨床为例,建立电主轴系统的动力学模型,获取了载荷与轴端位移的关系;估算了磨削加工时产生的静态和动态加工力,提出了服役精度保持的静/动载荷需求。设计并建造了磁力减载系统,包括结构和测控两个模块。其中,结构模块特色在于磁力减载组件配备有万向支撑方案,测控模块支持开环和闭环两种控制策略。设计专项试验验证了减载系统的性能。研究结果表明:不转时减载组件可实现约35N静载和28N幅值谐波动载功能,初步证明采用电磁技术消减机床加工力是可行的。针对引入减载装置的电主轴系统,采用人工调节电流的开环控制策略更有效。
Abstract
In order to keep the service precision of electric spindle supported by hybrid bearing , the method of reducing static and dynamic processing force by electromagnetic force is proposed and a magnetic lightening system is developed. Taking the grinding machine as an example, the dynamic model of the electric spindle system is established, and the regular between force and displacement is obtained. The static and dynamic force in grinding processing are analyzed and estimated. Then the static and dynamic load demands for service precision keeping of electric spindle are put forward. The magnetic lightening system is designed and developed, which includes the structure modules and the measurement - control module. Among them, the feature of structure module is the universal support scheme, and the measurement - control module supports open loop and closed loop control strategies. A special experiment is designed to verify the performance of magnetic lightening system. It is showed that the magnetic lightening system can satisfy the function of static load 35N and dynamic load 28N. It is preliminarily evidenced that using electromagnetic technique to reduce machining force is feasible. For the electric spindle with lightening device, it is more effective by using open loop load control strategy of artificial adjusting.
关键词
动静压轴承 /
电主轴 /
磁力减载 /
精度保持 /
服役精度
{{custom_keyword}} /
Key words
Hybrid bearing /
electric spindle /
magnetic lightening /
precision keeping /
service precision
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lin Wang, Shiyuan Pei, Xianzhi Xiong, Hua Xu. Study on the Static Performance and Stability of a Water-Lubricated Hybrid Bearing with Circumferential Grooves and Stepped Recesses Considering the Influence of Recess Sizes[J]. Tribology transactions, 2014, 57(1): 36-45.
[2] Singh N, Sharma SC, Jain SC, et al. Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes[J]. Tribology International, 2004, 37 (1): 11-24.
[3] 马浩,贾庆轩,曲庆文,柴山,姚福生. 转子动平衡理论分析[J].机械工程学报,2000,36(3):1-3.
Ma Hao, Jia Qingxuan, Qu Qingwen, Chai Shan and Yao Fusheng. Analysis of the rotor dynamic balancing theory[J]. Chinese Journal of Mechanical Engineering, 2000, 36(3) :1-3.
[4] 祝长生.一种用于电磁轴承特性可控的弹性备用轴承[J]. 航空学报,2010,31(10):2087-2092.
ZHU Changsheng. A controllable flexible backup bearing for active magnetic bearings [J]. Acta Aeronauticaet Astronautica Sinica, 2010, 31(10):2087-2092.
[5] 李黎川,丁玉成,卢秉恒. 超精密磁悬浮工作台及其解耦控制[J]. 机械工程学报,2004,40(9):84-88+94.
LI Lichuan, DING Yucheng, LU Bingheng. High-precision magnetically suspended table and its decoupling control[J]. Journal of Mechanical Engineering, 2004, 40(9):84-88, 94.
[6] 马宏忠,王斌,鞠平. 混合磁悬浮水轮发电机组转子承重系统设计与建模[J]. 河海大学学报(自然科学版),2010,38(3):342-346.
MA Hongzhong, WANG Bin, JU Ping. Design and modeling of hybrid magnetic levitation rotor weight support systems for hydraulic turbine generator units[J]. Journal of Hehai University (Natural Sciences). 2010, 38(3):342-346.
[7] He D, Morita H, Zhang X, et al. Development of a novel 5-DOF controlled maglev local actuator for high-speed electrical discharge machining[J]. Precision Engineering, 2010, 34(3): 453-460.
[8] 姚剑飞,王维民,杨佳丽,等.转子–轴承系统中电磁作动器的力学特性分析及实验研究[J].北京化工大学学报:自然科学版,2012,39(5):102-106.
Yao Jianfei,Wang Weimin,Yang Jiali,et al.Characteristic analysis of electromagnetic force and experimental measurements for a rotor-bearing system[J].Journal of Beijing University of Chemical Technology:Natural Science,2012,39(5):102-106(in Chinese).
[9] Ma Shilei,Pei Shiyuan,Wang Lin,et al.A novel active online electromagnetic balancing method- principle and structure analysis[J].Journal of Vibration and Acoustics,ASME,2012,134(3):034503-1-8.
[10] 周训通,刘宏昭,邱荣华,等.高速电主轴非接触电磁加载研究[J].中南大学学报:自然科学版,2013,44(7):2756-2763.
Zhou Xuntong,Liu Hongzhao,Qiu Ronghua,et al.Non-contact loading of high speed motorized spindle[J].Journal of Central South University:Science and Technology,2013,44(7):2756-2763(in Chinese).
[11] 贾谦,欧阳武,张帆等. 水润滑轴承磨损寿命预测校正试验载荷的磁力模拟研究[J]. 中国电机工程学报,2014,34(17):2836-2842.
JIA Qian, OUYANG Wu, ZHANG Fan, et al. Magnetic simulation research of prediction-correction test loading for water-lubricated bearing wear life[J]. Proceedings of the CSEE, 2014, 34(17):2836-2842.
[12] 欧阳武,张帆,王建磊,袁小阳. 低黏润滑轴承可靠性强化试验中磁力加载研究[J]. 机械工程学报,2015,51(4):199-205.
OUYANG Wu, ZHANG Fan, WANG Jianlei, YUAN Xiaoyang. Research on Magnetic Loading in Reliability Enhancement Testing of Low Viscosity Lubricated Bearings[J]. Chinese Journal of Mechanical Engineering, 2015, 51(4): 199-205.
[13] 张春河,林彬,韩建华. ELID超精密镜面磨削过程中磨削力变化规律的试验分析[J]. 航空精密制造技术,1998,34(1):8-11.
Zhang Chunhe, Lin Bin, Yu Aibin, et al. Experimental analysis of the variation of grinding force in the process of ELID super-precision mirror finishing[J]. Aviation Precision Manufacturing Technology, 1998, 34(1): 8-11.
[14] 曹广忠,虞烈,谢友柏.实心转子-电磁轴承系统的损耗分析[J].航空动力学报,2003,18(1):124-129.
Cao Guangzhong, Yu Lie, Xie Youbai. Rotating loss analysis for active magnetic bearing with solid rotating rotor[J].Journal of Aerospace Power, 2003, 18(1): 124-129.
[15] 张钢,虞烈,曹广忠等.电磁推力轴承的力学特性研究[J].西安交通大学学报,1998,3(8):43-47.
Zhang Gang, Yu Lie, Cao Guangzhong, et al. Mechanical characteristics of thrust magnetic bearing[J]. Journal of Xi’an Jiaotong University, 1998, 3(8): 43-47.
[16] 胡业发,周祖德.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.
Hu Yefa, Zhou Zude. The basic theory and application of magnetic bearings[M]. Beijing: Mechanic industry Press,2006.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}