高速列车前端多胞吸能结构的耐撞性优化

张秧聪1许平1彭勇1邓雯苑1,2车全伟1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 31-36.

PDF(1598 KB)
PDF(1598 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 31-36.
论文

高速列车前端多胞吸能结构的耐撞性优化

  • 张秧聪1许平1彭勇1邓雯苑1,2车全伟1
作者信息 +

Crashworthiness Optimization of High-speed Train FrontalMulti-cell Energy-absorbing Structure

  • ZHANG Yang-cong1, XU Ping1,PENG Yong1 ,DENG Wen-yuan1,2,CHE Quan-wei1
Author information +
文章历史 +

摘要

为设计具有良好耐撞性能的高速列车前端多胞吸能结构,基于显式动力学有限元软件LS-DYNA,建立此吸能结构的有限元模型,并通过台车碰撞试验验证了有限元模型的准确性,结合验证的有限元模型与全因子试验设计,构造了吸能结构的比吸能SEA和撞击平台力关于设计参数单元胞边长和壁厚的Kriging代理模型,并进行了误差分析,采用多目标粒子群优化算法,对多胞吸能结构的截面尺寸和厚度进行了优化设计。结果表明:壁厚比单元胞边长对多胞吸能结构耐撞性影响更显著,通过合理匹配壁厚和边长,能有效提高撞击平台力和比吸能。

Abstract

To designhigh-speed train frontalmulti-cell energy-absorbing structure with excellent crashworthiness,the finite element model (FEM) of energy-absorbing structure was established using finite element software LS-DYNA based on explicit dynamic, and FEM was effectively verified using trolley collision test.Combined with the validated FEM and full factorial experiment design, the Kriging surrogate models of specific energy absorption (SEA)and mean crushing forcewith respect to design parameters were respectively constructed, and error analysis was given. The section size and thickness of energy-absorbing structurewere optimized by using multi-objective particle swarm optimization algorithm.The result shows that wall thickness than cell-wall length has more obvious impact on crashworthiness of multi-cell energy-absorbing structure, the mean crushing force and SEA can be effectively improved by reasonable matching wall thickness and length.

关键词

固体力学 / 多胞结构 / 数值仿真 / 碰撞试验 / 多目标优化

Key words

Solid mechanics / Multi-cellstructure / Numerical simulation / Impact experiments / Multi-objective optimization

引用本文

导出引用
张秧聪1许平1彭勇1邓雯苑1,2车全伟1. 高速列车前端多胞吸能结构的耐撞性优化[J]. 振动与冲击, 2017, 36(12): 31-36
ZHANG Yang-cong1, XU Ping1,PENG Yong1,DENG Wen-yuan1,2,CHE Quan-wei1. Crashworthiness Optimization of High-speed Train FrontalMulti-cell Energy-absorbing Structure[J]. Journal of Vibration and Shock, 2017, 36(12): 31-36

参考文献

[1] 张志新, 肖守讷, 阳光武, 等. 高速列车乘员碰撞安全性研究[J]. 铁道学报, 2013, 35(10): 24-32.
ZHANG Zhi-xin, XIAO Shou-ne, YANG Guang-wu, etc. Research on Collision Safety of High-speed Train Crews & Passengers[J]. Journal of the China Railway Society, 2013, 35(10): 24-32.
[2] 刘建新, 赵华. 高速动力车能量吸收装置[J]. 铁道学报, 1997, 19(3): 32-36.
LIU Jian-xin, ZHAO Hua. Energy Absorbing Devices for High-speed Locomotive under Crash[J]. Journal of the China Railway Society, 1997, 19(3): 32-36.
[3] 蒋致禹, 顾敏童, 赵永生. 一种薄壁吸能结构的设计优化[J]. 振动与冲击, 2010, 29(2): 111-116.
JIANG Zhi-yu, GU Min-tong, ZHAO Yong-sheng. A thin-walled energy-absorbing structure design optimization[J]. Journal of Vibration and Shock, 2010, 29(2): 111-116.
[4] Lewis J H, Rasaiah W G, Scholes A. Validation of measures to improve rail vehicle crashworthiness[J].   Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1996, 210(2):  73-85.
[5] Lu G. Energy absorption requirement for crashworthy vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2002, 216(1): 31-39.
[6] 李松晏, 郑志军. 高速列车吸能结构设计和耐撞性分析[J]. 爆炸与冲击, 2015, 02期(02):164-170.
LI Song-Yan, ZHEN Zhi-Jun. Energy-absorbing structure design and crashworthiness analysis of high-speed trains[J]. Explosion and Shock Waves, 2015, 02: 164-170.
[7] 雷成, 肖守讷, 罗世辉. 基于显式有限元的高速列车吸能装置吸能原理研究[J]. 铁道机车车辆, 2012, 32(2): 1-5.
LEI Cheng, XIAO Shou-ne, LUO Shi-hui. Research on the Energy-absorbing Theory of High-speed Train energy-absorbing Component Based on the Explicit Finite Element[J]. Railway Locomotive & Car, 2012, 32(2): 1-5.
[8] 陈秉智, 张向海, 马纪军, 等. 高速动车组被动安全性和耐撞性研究[J]. 计算力学学报, 2011, 28(1): 152-158.
CHEN bing-zhi, ZHANG Xiang-hai, MA Ji-jun, etc. High-speed EMUs passive safety and crashworthiness study[J]. Chinese Journal of Computational Mechanics, 2011, 28(1): 152-158.
[9] 张志新. 高速列车耐撞性结构及安全性研究[D]. 西南交通大学, 2012.
[10] 姚松, 田红旗. 车辆吸能部件的薄壁结构碰撞研究[J]. 中国铁道科学, 2001, 22(2): 55-60.
YAO Song, TIAN Hong-qi. Research on Vehicle Energy Absorption Component of Thin-walled Structure under Impact[J] China Railway Science, 2001, 22(2): 55-60.
[11] 栗荫帅. 车辆薄壁结构碰撞吸能特性分析与改进[D]. 大连理工大学, 2007.
[12] 贾宇, 肖守讷. 耐碰撞车体吸能装置的薄壁结构研究[J]. 铁道车辆, 2005, 43(5): 6-10.
JIA Yu, XIAO Shou-ne. Research on the Thin-Wall Structureof the Energy Absorption Equipment on theCollision Resistant Car-body[J]. Rolling Stock, 2005, 43(5): 6-10.
[13] 谢素超. 耐冲击地铁车辆吸能结构研究[D]. 中南大学, 2007.
[14] 张平, 马建, 那景新. 波纹管耐撞性的多目标优化[J]. 振动与冲击, 2015, 34(15): 3.
ZHANG Ping, MA Jian, NA Jing-xin. Multi-objective Optimization on the Crashworthiness of Corrugated Tube[J]. Journal of Vibration and Shock,2015, 34(15): 3.
[15] 高广军, 姚松. 车辆薄壁结构撞击吸能特性研究[J]. 铁道机车车辆, 2002 (2): 8-10.
Gao Guang-jun, Yao Song. Research on Energy Absorption Attribute in collision of Thin-walled Structurebetween trains[J] . Railway Locomotive & Car, 2002 (2): 8-10.
[16] 文桂林, 孔祥正, 尹汉锋, 等. 泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J]. 振动与冲击, 2015, 34(5): 115-121.
WEN Gui-lin, KONG Xiang-zheng, YIN Han-feng, etc. Multi-objective optimization design of form-filled sandwich wall multi-cell structure[J]. Journal of Vibration and Shock, 2015, 34(5): 115-121.
[17] 亓昌, 董方亮, 杨姝, 等. 锥形多胞薄壁管斜向冲击吸能特性仿真研究[J]. 振动与冲击, 2012, 31(24): 102-107.
QI Chang, DONG Fang-liang, YANG Zhu. Energy absorbing characteristics of a tapered multi-cell thin-walled tube under oblique impact[J]. Journal of Vibration and Shock,2012, 31(24): 102-107.
[18] 张在中, 姚曙光, 许平等. 高速列车车体前端吸能结构的碰撞仿真与试验[J]. 机车车辆工艺, 2015, 第3期:33-34.
ZHANG Zai-zhong, YAO Shu-guang, XU Ping, etc. High-speed Train Car Body Front-end Energy-absorbing Structure of Crash Simulation and Experiment[J]. Locomotive & Rolling Stock Technology, 2015, 3:33-34.
[19] Benyounis K Y, Olabi A G. Optimization of different welding processes using statistical and numerical approaches–A reference guide[J]. Advances in Engineering Software, 2008, 39(6): 483-496.
[20] Raquel C R, Naval Jr P C. An effective use of crowding distance in multiobjective particle swarm optimization[C]//Proceedings of the 7th Annual conference on Genetic and Evolutionary Computation. ACM, 2005: 257-264.

PDF(1598 KB)

Accesses

Citation

Detail

段落导航
相关文章

/