非对称夹持的裂纹悬臂梁振动响应分析

马辉1,2,张文胜1, 曾劲1, 武爽1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 37-42.

PDF(2372 KB)
PDF(2372 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (12) : 37-42.
论文

非对称夹持的裂纹悬臂梁振动响应分析

  • 马辉1,2,张文胜1, 曾劲1, 武爽1
作者信息 +

Asymmetric Gripper-induced Vibration Responses Analysis for a Cracked Cantilever Beam

  • MA Hui1,2, ZHANG Wensheng1, ZENG Jin1, WU Shuang1
Author information +
文章历史 +

摘要

以悬臂梁为研究对象,基于ANSYS软件建立了带有单边裂纹和非对称夹持的悬臂梁有限元模型,分析了悬臂梁在偏移边界与裂纹耦合作用下的振动响应,揭示了系统振动与悬臂梁边界偏移量和单边裂纹之间的对应关系。研究结果表明:在给定裂纹深度、位置以及偏移边界的前提下,当裂纹位于下方时,随着边界偏移量的增加,振动响应中的二倍频幅值出现先减小后增大的趋势,由于偏移边界会改变梁的刚度,其振动响应结果类似于单边上裂纹,当偏移边界处于特定点时,其导致的类上裂纹效果和下裂纹在结构上达到对称,此时系统二倍频消失,且偏移边界离此特定点越远,系统的非线性越强;当裂纹位于上方时,随着边界偏移量的增加,振动响应中的二倍频幅值出现不断增大的趋势,这也是由于偏移边界导致的类上裂纹效果和上裂纹处于同侧增强了系统非线性造成的。

Abstract

In this paper, it mainly took cantilever beam as a research object, the beam model with single-sided crack and asymmetric gripper was established by ANSYS software, and the offset boundary and crack-induced vibration responses were analyzed, and the corresponding relationship between the system vibration and offset boundary of cantilever beam and crack location were revealed. The results show that double frequency amplitude of system vibration responses firstly decreases and then increases with the increase of offset boundary when the crack is on the bottom of the beam, and the vibration effects are similar to single-sided up-crack because cantilever beam stiffness can be changed by the offset boundary. At the moment double frequency component of the system disappears due to offset boundary-caused analogous up-crack and down-crack have reached to symmetry on the structure when it locates at the specific point and the more distant the offset boundary is, the more intense system nonlinear becomes; double frequency amplitude of system vibration responses increases with the increasing offset boundary when the crack is on the top of the beam , it is also because the offset boundary-caused analogous up-crack and up-crack at the same side increase the system nonlinear under the premise of the given depth, location of a crack and the offset boundary.
 

 

关键词

裂纹悬臂梁 / 非对称夹持 / 有限元 / 边界偏移量 / 振动响应

Key words

cracked cantilever beam / asymmetric gripper / finite element / offset boundary / vibration responses

引用本文

导出引用
马辉1,2,张文胜1, 曾劲1, 武爽1. 非对称夹持的裂纹悬臂梁振动响应分析[J]. 振动与冲击, 2017, 36(12): 37-42
MA Hui1,2, ZHANG Wensheng1, ZENG Jin1, WU Shuang1 . Asymmetric Gripper-induced Vibration Responses Analysis for a Cracked Cantilever Beam[J]. Journal of Vibration and Shock, 2017, 36(12): 37-42

参考文献

[1] Volovoi V V, Hodges D H. Assessment of beam modeling methods for rotor blade applications[J]. Mathematical and Computer Modelling, 2001, 33: 1099-1112.
[2] 沈亚鹏,唐照千.裂纹对悬臂梁板振动频谱的影响[J]. 固体力学学报, 1982 ,2:247-251.
Shen Yapeng, Tang Zhaoqian. Effects of cracks on frequency spectra of vibration of cantilever beams and plates[J]. Journal of Solid Mechanics, 1982,2:247-251.
[3] Chati M, Rand R, Mukherjee S J. Modal analysis of a cracked beam[J]. Journal of Sound and Vibration, 1997, 207(2): 249-270.
[4] Andreaus U, Baragatti P. Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response[J]. Journal of Sound and Vibration, 2011, 330(4): 721-742.
[5] Andreaus U, Casini P, Vestroni F. Non-linear dynamics of a cracked cantilever beam under harmonic excitation [J]. International Journal of Non-linear Mechanics, 2007, 42: 566-575.
[6] Chondros TG, Dimarogonas AD, Yao J. Vibration of a beam with a breathing crack[J]. Journal of Sound and Vibration, 2001, 239(1):57-67.
[7] Chati M, Rand R, Mukherjee S. Modal analysis of a cracked beam[J]. Journal of Sound and Vibration, 1997, 207(2): 249–270.
[8] 胡家顺, 冯新, 周晶. 呼吸裂纹梁不线性动力学特性研究[J]. 振动与冲击, 2009, 28(1): 76-80.
Hu Jiashun,Feng Xin,Zhou Jing.Study on the nonlinear dynamic response of a beam with a breathing crack[J].Journal of Vibration and Shock,2009,28(1):76-80.
[9] Ma H, Zeng J, Lang Z Q. Analysis of the dynamic characteristics of a slant-cracked cantilever beam [J]. Mechanical Systems and Signal Processing, 2016, 75: 261-279
[10] 李晓韬, 程光明, 杨志刚,等. 应用惯性冲击原理的非对称夹持式压电旋转驱动器的设计[J]. 光学精密工程, 2010, 18(1):156-161
Li Xiaotao, Cheng Guangming, Yang Zhigang, et al. Design of asymmetrical rotated piezoelectric actuators based on impact driving principle[J]. Optics and Precision Engineering, 2010, 18(1):156-161.
[11] .Natsiavas S, Gonzalez H. Vibration of harmonically excited oscillators with asymmetric constraints [J]. Journal of applied mechanics, 1992, 59(2S):S284-S290.
[12] Nandi A, Neogy S. Modelling of a beam with a breathing edge crack and some observations for crack detection [J]. Journal of Vibration and Control, 2002, 8(5):673-693.
[13] 崔韦,王建军. 共振条件下的裂纹梁振动与裂纹扩展耦合分析[J]. 推进技术, 2014(10):1404-1411.
Cui Wei, Wang Jianjun. Coupling analysis of vibration and crack propagation for a cracked beam at resonant state[J]. Journal of Propulsion Technology, 2014(10):1404-1411.

PDF(2372 KB)

Accesses

Citation

Detail

段落导航
相关文章

/