为研究飞艇主气囊结构模态特性,将飞艇内外气体假设为势流体,基于流固耦合理论和势流理论,建立薄膜与内外空气流场共同作用的理论模型。建立充气膜结构数值分析方法,在内、外流场的单面耦合和内外流场的双面耦合三种情况下,对薄膜充气管和模型飞艇进行湿模态分析,对比分析单面和双面气固耦合的分析结果,并通过模态试验对分析方法进行验证,结果表明采用双面耦合分析方法分析充气膜结构湿模态最合理。采用此方法对艇长5m、25m、50m和100m以及长细比为 1:3、1:3.5和1:4的双轴椭球外形飞艇主气囊在多种内压条件下进行湿模态分析,表明固有频率与艇长成反比,而长细比与内压对固有频率影响小。分析结果可以为飞艇的结构设计以及复杂充气膜结构模态分析提供参考。
Abstract
In order to analyze the modal characteristics of airship envelop, the air around the airship envelop is assumed as potential fluid, and based on the FSI (Fluid Structure Interaction) theory and potential flow theory, the theory on membrane and air flow field interaction is presented. Also a numerical method for pneumatic structure modal analysis is applied to study pneumatic membrane tube and airship model. Inner side coupling, outer side coupling and both sides coupling method are considered and compared, and experiments on the same subject demonstrate the validity of these methods. It results that the both sides coupling method is more suitable for pneumatic structure modal analysis. Therefore modal analyses on airship envelop with the slenderness ratios of 1:3, 1:3.5 and 1:4, and the lengths of 5m, 25m, 50m and 100m are completed, and it shows that natural frequency is in inverse proportion to length of airships, while the influence of slenderness ratios and internal pressures is little. The results can provide a reference for airship structure design and modal analysis of complex shape pneumatic membrane.
关键词
飞艇主气囊 /
模态分析 /
势流体 /
湿模态 /
流固耦合
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 甘晓华,郭颖.飞艇技术概论[M]. 北京:国防工业出版社,2005.
GAN Xiaohua, GUO Ying. Introduction to Airship Techology[M]. Beijing: National Defense Industry Press. 2005.
[2] 王基盛, 杨庆山. 流体环境中结构附加质量的计算[J]. 北方交通大学学报, 2003, 27(1): 40-43.
WANG Jisheng, YANG Qingshan. Calculation on Added Mass of Structures in Fluid Environments[J]. Journal of Northern Jiaotong University,2003, 27(1):40-43.
[3] 于肖宇, 张继革, 顾卫国, 等. 薄壁圆筒结构附加质量的实验研究[J]. 水动力学研究与进展, 2010 ,25(5): 655-659.
YU Xiaoyu, ZHANG Jige, GU Weiguo, etc. Experimental study of added mass of the thin-walled cylinder structure[J]. Chinese Journal of Hydrodynamics, 2010, 25(5):655-659.
[4] 毛国栋, 孙炳楠, 楼文娟. 膜结构的附加空气质量[J]. 工程力学, 2004, 21(1):153-158.
MAO Guodong, SUN Bingnan, LOU Wenjuan. The Added Air-Mass of Membrane Structures[J]. Engineering Mechanics, 2004, 21(1):153-158.
[5] 高海健, 陈务军, 付功义. 预应力薄膜充气梁模态的分析方法及特性[J]. 华南理工大学学报:自然科学版, 2010 ,38(7): 135-139.
GAO Haijian, CHEN Wujun, FU Gongyi. Modal Analysis Method and Modal Behavior of Prestressed Inflatable Fabric Beam[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(7):135-139.
[6] 陈宇峰, 陈务军, 何艳丽, 等. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报, 2014, 48(002): 234-238.
CHEN Yufeng, CHEN Wujun, HE Yanli, etc. Dry and Wet Modal Analysis and Evaluation of Influencing Factors forFlexible Airship Envelop[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2):234-238,243.
[7] Li Y Q, Wang L, Shen Z Y, etc. Added-mass estimation of flat membranes vibrating in still air [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2011, 99 (8): 815-824.
[8] 王磊, 李元齐, 沈祖炎. 薄膜振动附加质量试验研究[J]. 振动工程学报, 2011, 24(2): 125-132.
WANG Lei, LI Yuanqi, SHEN Zuyan. Experimental investigation on the added mass of membranes vibrating in air[J]. Journal of Vibratio n Engineering, 2011, 24(2):125-132.
[9] Epureanu B I, Hall K C, Dowell E H. Reduced-order models of unsteady viscous flows in turbomachinery using viscous–inviscid coupling[J]. Journal of Fluids and Structures, 2001, 15(2): 255-273.
[10] 毛国栋, 孙炳楠, 楼文娟, 等. 膜结构风振响应计算中的流固耦合因素研究[J]. 振动工程学报, 2004, 17(2): 228-232.
MAO Guodong, SUN Bingnan, LOU Wenjuan. Analysis of the Fluid-Structure Coupl ing Factors for Wind-Induced Dynamic Response of Membrane Structures[J]. Journal of Vibratio n Engineering, 2004, 17(2):228-232.
[11] 陈宇峰,陈务军,邱振宇,等. 空气对预应力薄膜结构模态的影响[J]. 浙江大学学报(工学版),2015,49(6):1123-1127
CHEN Yufeng, CHEN Wujun, QIU Zhenyu, etc. Effects of Airon Modal Behavior of Pre-stressed Membrane Structure[J]. Journal of Zhejiang University (Engineering Science),2015, 49(6):1123-1127.
[12] 李鹏, 杨庆山. 内充气体与外部膜材的共同作用理论模型[J]. 力学学报, 2013, 45(6):919-927.
LI Peng, YANG Qingshan. Interaction Model of The Enclosed Air and The Outer Membrane[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6):919-927.
[13] 宋月萧,杨庆山. 气枕式膜结构的模态分析[C] 北京:第十二届空间结构学术会议, 2008:217-222.
SONG Yuexiao, Yang Qingshan.Modal Analysis of Air Pillow Membrane Structure[C].Beijing: The 12th Academic Conference for Spatial Structures, 2008:217-222.
[14] 余建新, 卫剑征, 谭惠丰. 薄膜充气环动态特性试验研究[J]. 振动与冲击, 2013, 32(7): 11-16.
YU Jianxin, WU Jianzheng, TAN Huifeng. Tests for thin film inflatable toruses[J]. Journal of vibration and shock, 2013,32(7):11-16.
[15] 孙祥海. 流体力学[M].上海:上海交通大学出版社, 2000.
SUN Xianghai. Fluid Mechanics[M].Shanghai: Shanghai Jiao Tong University Press, 2000.
[16] Liao L, Pasternak I. A review of airship structural research and development[J]. Progress in Aerospace Sciences, 2009, 45(4): 83-96.
[17] 周利霖,唐国金. 大型飞艇缩比模型设计方法研究[C]长沙:第三届高分辨率对地观测学术年会,2014:234-251.
ZHOU Lilin, TANG Guojin. Design Method of Scale Model for Large Airship[C]. Changsha:The 3th China High Resolution Earth Observation Conference,2014:234-251
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}