针对芯层为塑性多孔材料的抗冲覆盖层在水下非接触爆炸载荷作用时的流固耦合问题开展了理论研究。采用塑性冲击波理论求解覆盖层的动态压缩;采用改进的Taylor板理论求解流体与覆盖层的耦合作用;采用空化理论求解流体空化的传播及空化溃灭的二次加载过程,建立了完整的考虑覆盖层大变形、流固耦合效应及空化效应的理论模型。研究结果揭示了塑性多孔覆盖层在水下爆炸作用时的流固耦合及空化效应的影响。
Abstract
The fluid-structure interaction effects of cellular claddings subjected to underwater explosion induced shock loadings are studied analytically in this paper. One-dimensional analytical model which can consider the large deformation of cladding, fluid-structure interaction and cavitation phenomenon is built to solve this problem, based on the plastic shock wave theory, modified Taylor’s model and cavitation theory. The research has revealed the fluid-structure interaction effects of a cellular cladding during the underwater explosion event.
关键词
水下爆炸 /
多孔覆盖层 /
流固耦合 /
空化
{{custom_keyword}} /
Key words
underwater explosion /
cellular cladding /
fluid-structure interaction /
cavitation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谌勇,华宏星,汪玉,等.超弹性夹芯覆盖层的水下爆炸防护性能[J].爆炸与冲击,2009,29(4):395-400.
CHEN Yong, HUA Hong-xing, WANG Yu, et al. Protective effects of hyper-elastic sandwiches coated onto metal boxes subjected to underwater explosion [J]. Explosion and Shock Waves, 2009, 29(4): 395-400.
[2] 章振华,谌 勇,华宏星,等.超弹性夹芯覆盖层抗冲击性能分析及实验研究[J].振动与冲击,2012,31(5):132-134.
ZHANG Zhen-hua, CHEN Yong, HUA Hong-xing, et al. Simulation and test for hyperelastic sandwich coatings in crush dynamics [J]. Journal of Vibration and Shock, 2012, 31(5) :132-134.
[3] 章振华,谌 勇,肖锋,等.敷设超弹性覆盖层的舰船水下爆炸冲击实验与仿真分析[J].振动与冲击,2014,33(10):106-112.
ZHANG Zhen-hua, CHEN Yong, XIAO Feng, et al. Underwater explosion tests and simulation for ships with hyper-elastic coating [J]. Journal of Vibration and Shock, 2014, 33(10):106-112.
[4] 章振华,谌勇,华宏星,等.抗冲瓦的结构研究及创新设计[J].噪声与振动控制,2012,32(6):100-104.
ZHANG Zhen-hua, CHEN Yong, HUA Hong-xing, et al. Research of Anti-shcok Layer and Innovation Design [J]. Noise and Vibration Control, 2012, 32(6):100-104.
[5] Fleck NA, Deshpande VS. The resistance of clamped sandwich beams to shock loading [J]. Journal Applied Mechanics, 2004,71(3):386-401.
[6] Xue Z, Hutchinson JW. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004,30(10):1283-1305.
[7] Tilbrook MT, Deshpande VS, Fleck NA. The impulsive response of sandwich beams: Analytical and numerical investigation of regimes of behavior [J]. Journal of the Mechanics and Physics of Solids, 2006,54(11):2242-2280.
[8] McShane GJ, Deshpande VS, Fleck NA. Underwater blast response of free-standing sandwich plates with metallic lattice cores [J]. International Journal of Impact Engineering, 2010,37(11):1138-1149.
[9] Davison L. Fundamentals of Shock Wave Propagation in Solids [M]. Springer, 2008.
[10] Taylor GI. The pressure and impulse of submarine explosion waves on plates [C], In The scientific papers of G.I. Taylor, vol. III. Cambridge, UK: Cambridge University Press;1963,pp. 287-303.
[11] McMeeking RM, Spuskanyuk AV, He MY, et al. An analytical model for the response to water blast of unsupported metallic sandwich panels [J]. International journal of Solids and Structures, 2008,45(2):478-496.
[12] Schiffer A, Tagarielli VL, Petrinic N, et al. The response of rigid plates to deep water blast: analytical models and finite element predictions [J]. Journal of Applied Mechanics, 2012,79(6):061014.
[13] Cole RH. Underwater explosions [M]. Princeton, NJ, USA: Princeton University Press, 1948.
[14] Kennard EH. Cavitation in an elastic liquid [J]. Physical Review, 1943,63(5-6):172-181.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}