模态参数自动识别的虚假模态剔除方法综述

宋明亮,苏亮,董石麟,罗尧治

振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 1-10.

PDF(1257 KB)
PDF(1257 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 1-10.
论文

模态参数自动识别的虚假模态剔除方法综述

  • 宋明亮,苏亮,董石麟,罗尧治
作者信息 +

A review of discriminating spurious modes in automaticmodal parametric identification

  • Song Ming-liang,Su Liang, Dong Shi-lin,Luo Yao-zhi
Author information +
文章历史 +

摘要

模态参数自动识别技术的关键在于对真实模态和虚假模态进行自动甄别。对模态参数识别方法中自动剔除虚假模态的方法进行了综述。围绕如何自动剔除虚假模态,将现有模态参数自动识别方法分为三类:基于智能算法的稳定图自动分析方法、基于指标阈值的真假模态自动区分方法、基于改进识别算法获得清晰稳定图的自动分析技术。对以上三类方法的原理进行了较为详细全面的介绍,提出了各自的特点、存在的问题以及将来的研究方向。结合实测加速度数据,采用具有代表性的自动识别方法对一钢筋混凝土结构建筑进行虚假模态的自动剔除,并对不同方法的识别结果进行了比较。

Abstract

The key point of autonomous modal parametric identification is automatically discriminating spurious modes from physical modes.Autonomous spurious modes elimination methodsofmodal parameter identification are reviewed. Focusing on how to automatically eliminate mathematicalmodes, the existing methodsare divided into three categories: automatic analysis of stabilization diagrams based on intelligence algorithm, study of new criteria to determine the physical modes and development of identification algorithms that candeliver clearer stabilization diagrams. Detailed and comprehensive presentation of the principles of the above three methods are given.What’s more, the characteristics, problems and future research directions of these methods are discussed. At last, combined with the measured acceleration data, representative automatic identification methodsare used to automatically discriminate the false modes of a reinforced concrete structure. The accuracy of the representative automatic identification methodswere compared.

关键词

模态参数
/ 自动识别 / 指标 / 稳定图 / 虚假模态 / 模糊聚类

Key words

modal parameter / autonomous identification / criteria / stabilization diagram / spurious mode / fuzzy clustering method

引用本文

导出引用
宋明亮,苏亮,董石麟,罗尧治. 模态参数自动识别的虚假模态剔除方法综述[J]. 振动与冲击, 2017, 36(13): 1-10
Song Ming-liang,Su Liang, Dong Shi-lin,Luo Yao-zhi. A review of discriminating spurious modes in automaticmodal parametric identification[J]. Journal of Vibration and Shock, 2017, 36(13): 1-10

参考文献

[1] Sas P. Modal Analysis Theory and Testing[M]. KatholiekeUniversteit Leuven, DepartementWerktuigkunde, 2001.
[2] 高新波. 模糊聚类分析及其应用[M]. 西安电子科技大学出版, 2004.
Gao Xin-bo. Fuzzy clustering analysis and its application [M]. XidianUniversity publisher, 2004.
[3] Magalhaes F, Cunha A, Caetano E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing, 2009, 23(2): 316-329.
[4] 孙鑫晖, 张令弥. 宽频带模态识别算法中极点的自动选取[J]. 地震工程与工程振动学报, 2009, 29(1): 130-134.
Sun Xin-hui, Zhang ling-mi. Automaticpoleselection forbroad bandmodalidentification [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(1): 130-134.
[5] 孙国富. 基于模糊聚类的模态参数自动识别 [J]. 振动与冲击, 2010, 29(9): 86-88.
Sun Guo-fu. Automatic modal parameters identification based on fuzzy clustering [J]. Journal of vibration and shock, 2010, 29(9): 86-88.
[6] Alıcıoglu B, Lus H. Ambient vibration analysis with subspace methods and automated mode selection: case studies[J]. Journal of structural engineering, 2008, 134(6): 1016-1029.
[7] Bakir P G. Automation of the stabilization diagrams for subspace based system identification[J]. Expert Systems with Applications, 2011, 38(12): 14390-14397.
[8] Pappa R S, Elliott K B, Schenk A. Consistent-mode indicator for the eigensystem realization algorithm[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 852-858.
[9] 汤宝平, 章国稳, 陈卓. 基于谱系聚类的随机子空间模态参数自动识别[J]. 振动与冲击, 2012, 31(10): 92-96.
Tang Bao-ping, Zhang Guo-wen, Chen Zhuo. Automatic stochastic subspace identification of modal parameters based on hierarchical clustering method [J]. Journal of vibration and shock, 2012, 31(10): 92-96.
[10] Cabboi A, Magalhaes F, Gentile C, et al. Automatic operational modal analysis: challenges and practical application to a historical bridge[C]//6th ECCOMAS Conference on Smart Structures and Materials. 2013.
[11] Reynders E, Houbrechts J, De Roeck G. Fully automated (operational) modal analysis[J]. Mechanical Systems and Signal Processing, 2012, 29: 228-250.
[12] Goethals I, Vanluyten B, De Moor B. Reliable spurious mode rejection using self-learning algorithms[C]//Proceedings of the International Conference on Noise and Vibration Engineering (ISMA 2004), Leuven, Belgium. 2004: 991-1003.
[13] Rainieri C, Fabbrocino G. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation[J]. Mechanical Systems & Signal Processing, 2015, 60-61:512–534.
[14] Ubertini F, Gentile C, Materazzi A L. On the automatic identification of modal parameters by subspace methods[C]//Proceedings of the EVACES 2011 Conference, October. 2011: 3-5.
[15] Ubertini F, Gentile C, Materazzi A L. Automated modal identification in operational conditions and its application to bridges[J]. Engineering Structures, 2013, 46: 264-278.
[16] Hong A L, Ubertini F, Betti R. Wind analysis of a suspension bridge: identification and finite-element model simulation[J]. Journal of Structural Engineering, 2010, 137(1): 133-142.
[17] 姜金辉, 陈国平, 张方,等. 模糊聚类法在试验模态参数识别分析中的应用[J]. 南京航空航天大学学报, 2009, 41(3): 344-347.
Jiang Jin-hui, Chen Guo-ping, Zhang Fang, et al. Application of Fuzzy Clustering Theory in Experimental Modal Parameter Identification Analysis [J]. Journal of Nanjing university of aeronautics & astronautics, 2009, 41(3): 344-347.
[18] Verboven P, Parloo E, Guillaume P, et al. Autonomous structural health monitoring—part 1: Modal parameter estimation and tracking[J]. Mechanical Systems & Signal Processing, 2002, 16(4):637-657.
[19] Verboven P, Parloo E, Guillaume P, et al. Autonomous modal parameter estimation based on a statistical frequency domain maximum likelihood approach[C]//Proceedings, International Modal Analysis Conference (IMAC). 2001: 15111517.
[20] Vanlanduit S, Verboven P, Guillaume P, et al. An automatic frequency domain modal parameter estimation algorithm[J]. Journal of Sound & Vibration, 2003, 265(3):647-661.
[21] Reynders E, Houbrechts J, De Roeck G. Automated interpretation of stabilization diagrams[M]//Modal Analysis Topics, Volume 3. Springer New York, 2011: 189-201.
[22] Scionti M, Lanslots J P. Stabilisation diagrams: Pole identification using fuzzy clustering techniques[J]. Advances in Engineering Software, 2005, 36(11): 768-779.
[23] Liu H, Wu C, Wan H, et al. Parameter identification based on stabilization diagram with kernel fuzzy clustering method[C]// Transportation, Mechanical, and Electrical Engineering (TMEE), 2011 International Conference on. IEEE, 2011:1185-1188.
[24]Ayvaz M T, Karahan H, Aral M M. Aquifer parameter and zone structure estimation using kernel-based fuzzy c -means clustering and genetic algorithm[J]. Journal of Hydrology, 2007, 343(3-4):240-253.
[25] Moore B. Principal component analysis in linear systems: Controllability, observability, and model reduction[J]. Automatic Control IEEE Transactions on, 1981, 26(1):17-32.
[26] Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction[J]. Journal of guidance, control, and dynamics, 1985, 8(5): 620-627.
[27] Goethals I, De Moor B. Subspace identification combined with new mode selection techniques for modal analysis of an airplane[C]//Proc. of the 13th IFAC symposium on system identification (SYSID 2003). 2003: 695-700.
[28] Scionti M, Lanslots J, Goethals I, et al. Tools to improve detection of structural changes from in-flight flutter data[C]//Proceedings of the Eighth International Conference on Recent Advances in Structural Dynamics. 2003.
[29] Deraemaeker A, Reynders E, De Roeck G, et al. Vibration-based structural health monitoring using output-only measurements under changing environment[J]. Mechanical systems and signal processing, 2008, 22(1): 34-56.
[30] Reynders E, De Roeck G. Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 617-637.
[31] Lanslots J, Rodiers B, Peeters B. Automated Pole Selection: Proof-of-Concept & Validation[C]//Proceedings of the ISMA International Conference on Noise and Vibration Engineering, Leuven, Belgium. 2004.
[32] Van der Auweraer H, Peeters B. Discriminating physical poles from mathematical poles in high order systems: use and automation of the stabilization diagram[C]//Instrumentation and Measurement Technology Conference, 2004. IMTC 04. Proceedings of the 21st IEEE. IEEE, 2004, 3: 2193-2198.
[33] Lau J, Lanslots J, Peeters B, et al. Automatic modal analysis. Reality or myth?[J]. VDI BERICHTE, 2007, 1982: 103.
[34] Verboven P, Guillaume P, Cauberghe B, et al. Stabilization charts and uncertainty bounds for frequency-domain linear least squares estimators[C]//Proceedings of the IMAC-XXI Conference and Exposition on Structural Dynamics, Feb. 2003: 3-6.
[35] Chhipwadia K S, Zimmerman D C, James G H. Evolving autonomous modal parameter estimation[C]//Proceedings, International Modal Analysis Conference (IMAC). 1999: 819-825.
[36] Goethals I, De Moor B. Model reduction and energy analysis as a tool to detect spurious modes[C]//Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium. 2002.
[37] Andersen P, Brincker R, Goursat M, et al. Automated modal parameter estimation for operational modal analysis of large systems[C]//International Operational Modal Analysis Conference (IOMAC). 2007: 299-308.
[38] Brincker R, Andersen P, Jacobsen N J. Automated frequency domain decomposition for operational modal analysis[C]//Proceedings of The 25th International Modal Analysis Conference (IMAC), Orlando, Florida. 2007, 415.
[39] Rainieri C, Fabbrocino G. Automated output-only dynamic identification of civil engineering structures[J]. Mechanical Systems and Signal Processing, 2010, 24(3): 678-695.
[40] 徐琪泽, 吴金志, 张毅刚. 基于振型相关性的结构模态参数频域自动识别[J]. 建筑结构, 2015(5):39-43.
Xu Qi-ze, Wu Jin-zhi, Zhang Yi-gang. An automated frequency domain modal identification method based on modal assurance criterion [J]. Journal of Building Structures, 2015(5) :39-43.
[41] Rainieri C, Fabbrocino G, Cosenza E. Automated Operational Modal Analysis as structural health monitoring tool: theoretical and applicative aspects[C]//Key Engineering Materials. 2007, 347: 479-484.
[42] Rainieri C, Fabbrocino G, Cosenza E. Fully automated OMA: an opportunity for smart SHM systems[C]//Proceedings, International Modal Analysis Conference (IMAC). 2009.
[43] Rainieri C, Fabbrocino G, Cosenza E. An approach to automated modal parameter identification for structural health monitoring applications[C]//Proceedings of The Ninth International Conference on Computational Structures Technology. 2008.
[44] Rainieri C, Fabbrocino G, Cosenza E. An automated procedure for modal parameter identification of structures under operational conditions[C]//Materials Forum. 2009, 33.
[45] Liu J M, Ying H Q, Shen S, et al. The Function of Modal Important Index in Autonomous Modal Analysis[C]//Proceedings, International Modal Analysis Conference (IMAC). 2007: 16.
[46] Liu J M, Shen S, Ying M, et al. The Optimization and Autonomous Identification of Modal Parameters[M]//Modal Analysis Topics, Volume 3. Springer New York, 2011: 203-214.
[47] 刘进明, 应怀樵, 章关永. OMA模态参数的优化及盲分析技术探讨[J]. 振动、测试与诊断, 2012, 32(6):1016-1020.
Liu Jin-Ming, Ying Huai-qiao, Zhang Guan-yong. Optimization of OMA modal parameter and technology study of blind analysis [J].  Journal of Vibration Measurement & Diagnosis, 2012, 32(6):1016-1020.
[48] Liu J M, Ying H Q, Shen S, et al. The Function of Modal Important Index in Autonomous Modal Analysis[C]//Proceedings, International Modal Analysis Conference (IMAC). 2007: 16.
[49] R. S., Pappa, W. S. E., and J. J-N. A Benchmark Problem for Development of Autonomous Structural Modal Identification[C]// Proceedings of the 15th International Modal Analysis Conference, 1997.
[50] James G H, Zimmerman D C, Chhipwadia K S. Application of autonomous modal identification to traditional and ambient data sets[C]//SPIE proceedings series. Society of Photo-Optical Instrumentation Engineers, 1999: 840-845.
[51] Peeters B, De Roeck G. One Year Monitoring of the Z24-Bridge: Environmental Influences Versus Damage Events, #268[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2000, 2(2):1570-1576.
[52] Brownjohn J M W, Carden E P. Tracking the effects of changing environmental conditions on the modal parameters of Tamar Bridge[C]//3rd international conference on structural health monitoring and intelligent infrastructure. 2007.
[53] Rainieri C, Fabbrocino G. Operational Modal Analysis of Civil Engineering Structures[M]. Springer New York, 2014.
[54] Chauhan S, Tcherniak D. Clustering approaches to automatic modal parameter estimation[C]//Proceedings of the 27th International Modal Analysis Conference. 2009.
[55] Mohanty P, Reynolds P, Pavic A. Automated interpretation of stability plots for analysis of a non-stationary structure[C]//25th International Modal Analysis Conference (IMAC XXV). 2007.
[56] Verboven P, Cauberghe B, Parloo E, et al. User-assisting tools for a fast frequency-domain modal parameter estimation method[J]. Mechanical systems and signal processing, 2004, 18(4): 759-780.
[57] Poncelet F, Kerschen G, Golinval J C. Operational Modal Analysis Using Second-Order Blind Identification[C]//26th International Modal Analysis Conference, Orlando, 2008.
[58] Phillips A W, Allemang R J. Additional mechanisms for providing clear stabilization (consistency) diagrams[C]//Proc. ISMA International Conference on Noise and Vibration Engineering, KatholiekeUniversiteit Leuven, Belgium. 2008 (1-2001).
[59] Phillips A W, Allemang R J, Brown D L. Autonomous modal parameter estimation: methodology[M]//Modal Analysis Topics, Volume 3. Springer New York, 2011: 363-384.
[60] Brincker R, Ventura C. Introduction to operational modal analysis[M]. John Wiley & Sons, 2015.
[61]Felber, A.J. Development of a hybrid evaluation system, Ph.D. Thesis, University of British Columbia, Department of Civil Engineering, Vancouver, 1993.

PDF(1257 KB)

Accesses

Citation

Detail

段落导航
相关文章

/