一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析

邓小林,刘旺玉

振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 103-109.

PDF(3123 KB)
PDF(3123 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 103-109.
论文

一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析

  • 邓小林,刘旺玉
作者信息 +

In-plane impact dynamics analysis of sinusoidal honeycomb structure with negative poisson's ratio

  • DENG Xiao-lin,LIU Wang-yu
Author information +
文章历史 +

摘要

研究了一种全参数化的正弦曲线蜂窝结构,通过Pro/Engineer构建了其参数化模型,采用ABAQUS建立了正弦曲线蜂窝结构的有限元模型。研究了不同振幅、不同胞壁厚度的正弦曲线蜂窝结构在不同冲击速度下的面内动力学响应。研究结果表明,正弦曲线蜂窝结构的反作用力波动情况与其振幅以及冲击速度直接相关。振幅越小、蜂窝结构胞壁越厚,其反作用力波动越明显。速度越高,蜂窝结构的反作用力波动越明显。而振幅较大的正弦曲线蜂窝结构,在不同的速度下,其反作用力表现出了较好的稳定性。正弦曲线蜂窝结构固定端的平台应力主要与其厚度有直接关系,与冲击速度无关。通过对正弦曲线蜂窝结构的能量吸收情况分析表明,随着振幅的增加,其能量吸收能力相对下降,随着速度的提高,蜂窝结构能量吸收能力趋向于一致。研究表明,正弦曲线蜂窝结构的轻微拉胀效应可增强其平面内能量吸收能力,相对普通的常规正六边形蜂窝结构,具有更好的能量吸收效果。

Abstract

Research a sine curve of the parameterized honeycomb structure, through the Pro/Engineer software build the parameterized model of honeycomb structure, honeycomb structure finite element model was established using ABAQUS software. Different amplitude and wall thickness of the honeycomb structure were studied under different impact velocities. The research results show that reaction of honeycomb structure is directly related to the amplitude of honeycomb structure and the impact velocity. The smaller the amplitude and the thicker the cell wall of honeycomb structure, reaction fluctuations of honeycomb more obvious. The greater the impact velocity,reaction fluctuations of honeycomb more obvious. The greater the amplitude of the honeycomb structure, reaction has good stability. Platform stress mainly depends on the cell wall thickness of cellular structure, has nothing to do with the impact velocity. Energy absorption characteristics for sine curve of honeycombs with different amplitude have research. With the increase of amplitude, energy absorption capacity decreased. With the increase of speed, sine curve of honeycomb structure energy absorption ability tends to be consistent. Research has shown that a slight auxetic effect can enhance the capacity of energy absorption. Sine curve honeycomb structure relative hexagonal honeycomb structure has better energy absorption effect.
 
 
 

关键词

负泊松比 / 正弦曲线 / 蜂窝结构 / 面内冲击

Key words

negative poisson's ratio / Sine curve / Honeycomb structure / In-plane impact

引用本文

导出引用
邓小林,刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103-109
DENG Xiao-lin,LIU Wang-yu. In-plane impact dynamics analysis of sinusoidal honeycomb structure with negative poisson's ratio[J]. Journal of Vibration and Shock, 2017, 36(13): 103-109

参考文献

[1] Johnson W, Reid S R. Metallic energy dissipating systems[J]. Applied Mechanics Reviews, 1978, 31(3): 277-288.
[2]Gibson L J, Ashby M F. Cellular solids: structure and properties[M].2nd ed.Cambridge University Press,1977:5-35.
[3]张新春,刘颖,张建辉.金属蜂窝材料的面内冲击响应和能量吸收特[J].功能材料,2013,44(15):2143-2147.
Zhang Xin-chun,Liu Ying,Zhang Jian-hui. In-plane crushing response and energy absorption characteristics of metal honeycombs[J]. Functional Materials,2013,44(15):2143-2147.
[4] Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs—a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182.
[5] Deqiang S, Weihong Z. Mean in-plane plateau stresses of hexagonal honeycomb cores under impact loadings[J]. Composite Structures, 2009, 91(2): 168-185.
[6] Sun D, Zhang W, Zhao Y, et al. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs[J]. Composite Structures, 2013, 96: 726-735.
[7] Xu S, Beynon J H, Ruan D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs[J]. Composite Structures, 2012, 94(8): 2326-2336.
[8] Deqiang S, Weihong Z, Yanbin W. Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings[J]. Composite Structures, 2010, 92(11): 2609-2621.
[9] Zheng Z, Yu J, Li J. Dynamic crushing of 2D cellular structures: a finite element study[J]. International Journal of Impact Engineering, 2005, 32(1): 650-664.
[10] Li K, Gao X L, Wang J. Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness[J]. International Journal of Solids and Structures, 2007, 44(14): 5003-5026.
[11]Liu Y D, Yu J L, Zheng Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International journal of solids and structures, 2009, 46(22): 3988-3998.
[12] Xie S, Zhou H. Analysis and optimization of parameters influencing the out-of-plane energy absorption of an aluminum honeycomb[J]. Thin-Walled Structures, 2015, 89: 169-177.
[13]He Q,Ma D W. Parametric study and multi-objective crashworthiness optimization of reinforced hexagonal honeycomb under dynamic loadings[J]. International Journal of Crashworthiness,2015,5:1-15.
[14] Love A E H. A treatise on the mathematical theory of elasticity[M]. Cambridge University Press, 2013.
[15] Lakes R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040.
[16] Carneiro V H, Meireles J, Puga H. Auxetic materials—A review[J]. Materials Science-Poland, 2013, 31(4): 561-571.
[17] Prawoto Y. Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio[J]. Computational Materials Science, 2012, 58: 140-153.
[18] Qiao J X,Chen C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J].International Journal of Impact Engineering,2015,83:47-58.
[19] Zhang X C, An L Q, Ding H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio[J]. Journal of Sandwich Structures and Materials,2014,10:1-30.
[20]卢子兴,李康.四边手性蜂窝动态压溃行为的数值模拟[J].爆炸与冲击,2014,34(2):181-187.
Lu Zi-xing,Li Kang. Numerical simulation on dynamic crushing behaviors of tetrachiral honeycombs[J]. Explosion and Shock Waves,2014,34(2):181-187.
[21]张新春,刘颖,李娜.具有负泊松比效应蜂窝材料的面内冲击动力学性能[J].爆炸与冲击,2012,32(5):475—482.
Zhang Xin-chun,Liu Ying,Li Na. In-Plane dynamic crushing of honeycombs with negative Poisson’s ratio effects[J]. Explosion and Shock Waves,2012,32(5):475-482.
[22]杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构[J]. 爆炸与冲击, 2015, 35(2):243-248.
Yang De-qing,Ma Tao,Zhang Geng-lin. A novel auxetic broadside defensive structure for naval ships[J]. Explosion and Shock Waves,2015,35(2):243-248.
[23] Schultz J, Griese D, Shankar P, et al. Optimization of Honeycomb Cellular Meso-Structures for High Speed Impact Energy Absorption[C] ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2011:955-965.
[24] Dolla W J, Fricke B A, Becker B R. Structural and drug diffusion models of conventional and auxetic drug-eluting stents[J]. Journal of Medical Devices, 2007, 1(1): 47-55.
[25] Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004, 52(14):4229–4237.

PDF(3123 KB)

Accesses

Citation

Detail

段落导航
相关文章

/