时滞立方位移反馈控制的高静低动刚度隔振器动力学分析

程春,李舜酩,王勇,江星星

振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 110-115.

PDF(1063 KB)
PDF(1063 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 110-115.
论文

时滞立方位移反馈控制的高静低动刚度隔振器动力学分析

  • 程春,李舜酩,王勇,江星星
作者信息 +

Dynamic analysis of a high-static-low-dynamic stiffness vibration isolator with time delayed cubic displacement feedback

  • Cheng Chun, Li Shunming, Wang Yong, Jiang Xingxing
Author information +
文章历史 +

摘要

为了克服增加线性阻尼能够抑制共振但会导致隔振系统高频性能变差的矛盾,提出时滞立方位移反馈控制策略。首先建立反馈控制的高静低动刚度隔振器动力学方程,采用多尺度法得到控制系统的稳态响应。其次分析反馈增益与滞后时间对控制系统动态特性的影响,并分析不同滞后时间下稳态响应的稳定性。最后定义控制系统的位移传递率,分析反馈参数对系统位移传递率的影响并和被动隔振系统的性能进行比较。结果表明:合适的反馈参数能够有效减小隔振系统共振区的位移传递率,却不影响高频区域的隔振性能;该控制策略对改善高静低动刚度隔振器的隔振性能具有理论指导意义。

Abstract

In order to overcome the dilemma that increasing the linear damping can suppress the resonance but makes the vibration isolation performance in high frequencies worse, the cubic displacement feedback with time delay is proposed in this paper. The dynamic equation of the high-static-low-dynamic stiffness (HSLDS) vibration isolator with feedback control is first built. And the steady-state response of the controlled system is obtained using the multiple scales method. Then, the effect of feedback gain and time delay on the dynamic characteristics of the controlled system is studied. And the steady-state responses with different time delays are also investigated. Finally, the displacement transmissibility of the controlled HSLDS vibration isolator is defined and compared with that of the passive counterpart. The effect of feedback parameters on the displacement transmissibility of the controlled system is analyzed. The results show that appropriate choice of feedback parameters can effectively reduce the displacement transmissibility in resonant region with the isolation performance in high frequencies unaffected. Besides, such control strategy has theoretical guiding significance for improving the isolation performance of the HSLDS vibration isolator.

关键词

隔振器 / 高静低动刚度 / 时滞反馈 / 多尺度法

Key words

 vibration isolator / high-static-low-dynamic stiffness / time-delayed feedback / multiple scales method

引用本文

导出引用
程春,李舜酩,王勇,江星星. 时滞立方位移反馈控制的高静低动刚度隔振器动力学分析[J]. 振动与冲击, 2017, 36(13): 110-115
Cheng Chun, Li Shunming, Wang Yong, Jiang Xingxing. Dynamic analysis of a high-static-low-dynamic stiffness vibration isolator with time delayed cubic displacement feedback[J]. Journal of Vibration and Shock, 2017, 36(13): 110-115

参考文献

[1] 彭献,黎大志,陈树年. 准零刚度隔振器及其弹性特性设计 [J]. 振动、测试与诊断, 1997, 17(4): 44-46.
Peng Xian, Li Dazhi, Chen Shunian. Quasi-zero stiffness vibration isolators and design for their elastic characteristic [J]. Journal of Vibration, Measurement & Diagnosis, 1997, 17(4): 44-46.
[2] Platus D L. Negative-stiffness-mechanism vibration isolation systems [C]// Proceedings of SPIE-The International Society for Optical Engineering. Denver: International Society for Optical Engineering, 1999: 98-105.
[3] 张建卓,董申,李旦. 基于正负刚度并联的新型隔振系统研究 [J]. 纳米技术与精密工程, 2004, 2(4): 314-318.
Zhang Jianzhuo, Dong Shen, Li Dan. Study on new type vibration isolation system based on combined positive and negative stiffness [J]. Nanotechnology and Precision Engineering, 2004, 2(4): 314-318.
[4] Ibrahim R A. Recent advances in nonlinear passive vibration isolators [J]. Journal of Sound and Vibration, 2008, 314(3): 371-452.
[5] Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness [J]. Journal of Sound and Vibration, 2009, 322(4-5): 707-717.
[6] Le T D, Ahn K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat [J]. Journal of Sound and Vibration, 2011, 330(26): 6311-6335.
[7] 刘兴天,孙靖雅,肖锋,等. 准零刚度微振动隔振器的原理和性能研究 [J]. 振动与冲击, 2013, 32(21): 69-73.
Liu Xingtian, Sun Jingya, Xiao Feng, et al. Principle and performance of a quasi-zero stiffness isolator for micro-vibration isolation [J]. Journal of Vibration and Shock, 2013, 32(21): 69-73.
[8] 孟令帅,孙景工,牛福,等. 新型准零刚度隔振系统的设计与研究 [J]. 振动与冲击, 2014, 33(11): 195-199.
Meng Lingshuai, Sun Jinggong, Niu Fu, et al. Design and Analysis of a novel quasi-zero stiffness vibration isolation system [J]. Journal of Vibration and Shock, 2014, 33(11): 195-199.
[9] 彭超,龚兴龙,宗路航,等,新型非线性低频被动隔振系统设计及实验研究 [J]. 振动与冲击, 2013, 32(3): 6-11.
Peng Chao, Gong Xinglong, Zong Luhang, et al. Design and tests for a new type nonlinear low-frequency passive vibration isolation system [J]. Journal of Vibration and Shock, 2013, 32(3): 6-11.
[10] Zhou J X, Wang X L, Xu D L, et al. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms [J]. Journal of Sound and Vibration, 2015, 346: 53-69.
[11] Cheng C, Li S M, Wang Y, et al. On the analysis of a piecewise nonlinear-linear vibration isolator with high-static-low-dynamic-stiffness under base excitation [J]. Journal of Vibroengineering, 2015, 17(7): 3453-3470.
[12] Zheng Y S, Zhang X N, Luo Y J, et al. Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring [J]. Journal of Sound and Vibration, 2016, 360: 31-52.
[13] Hu H Y, Dowell E H, Virgin L N, Resonances of a harmonically forced Duffing oscillator with time delay state feedback [J]. Nonlinear Dynamics, 1998, 15(4): 311-327.
[14] Sun X T, Xu J, Jing X J, et al. Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control [J]. International Journal of Mechanical Sciences, 2014, 82: 32-40.
[15] Gao X, Chen Q. Nonlinear analysis, design and vibration isolation for a bilinear system with time-delayed cubic velocity feedback [J]. Journal of Sound and Vibration, 2014, 333: 1562-1576.
[16] Huang D M, Xu W, Xie W X, et al. Principle resonance response of a stochastic elastic impact oscillator under nonlinear delayed state feedback [J]. Chinese Physics B, 2015, 24(4): 040502.

PDF(1063 KB)

Accesses

Citation

Detail

段落导航
相关文章

/