工程结构中,常采用干摩擦阻尼器来降低系统的动力响应幅值。振动环境中,连接界面间存在着复杂的接触和摩擦行为,这些行为具有跨尺度、迟滞非线性和切法向耦合等特点。本文建立了一种能同时考虑法向载荷变化和切向微滑摩擦行为的接触力学模型,推导了模型恢复力和相对位移间关系的表达式,利用不同模型间的比较验证了模型的有效性。将该模型应用于简化的摩擦阻尼器系统,求解了简谐激励下系统的迟滞回线、单位周期的能量耗散和频率响应曲线,并对不同模型的特性进行了比较分析。结果表明:是否考虑法向载荷变化对系统动力学响应预测有很大影响;考虑法向载荷变化的微滑摩擦模型能够更加完善、准确地模拟接触界面间的力学行为。
Abstract
Dry friction damper is widely applied to reduce the dynamic response amplitudes of engineering structures. There exist complex contact and friction behaviors under vibration excitation, which are multi-scale, hysteretic nonlinear and tangential-normal direction coupled. In this paper, a new interface contact model, which can consider micro-slip friction and variable normal load simultaneously is developed. The relationship between tangential restoring force and displacement is derived. The calculated hysteresis loops are compared with other published models to validate its effectiveness. Furthermore, the improved contact model is applied to a simple friction oscillator under harmonic excitation. The hysteresis curves and energy dissipation per period and frequency response curves calculated by different models are analyzed. The results show that whether considering normal load variation has an important influence on system dynamic response and the proposed model considering coupling of micro-slip tangential force and variable normal force simultaneously more comprehensively, exactly reproduce contact interface mechanics behaviors.
关键词
摩擦阻尼 /
接触 /
微滑 /
非线性 /
法向载荷变化
{{custom_keyword}} /
Key words
frictional damping /
contact /
micro-slip /
nonlinear /
variable normal load
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GAUL L, LENZ J. Nonlinear dynamics of structure assembled by bolted joints [J]. Acta Mechanics Sinica,1997, 125:169 -181
[2] SEGALMAN D J. Modelling joint friction in structural dynamics [J]. Structural Control and Health Monitoring, 2006, 13(1): 430-453.
[3] JOHNSON K L. Contact mechanics [M]. Cambridge University Press, 1987.
[4] PENNESTRI E, ROSSI V, SALVINI P, et al. Review and comparison of dry friction force models[J]. Nonlinear Dynamics, 2015, 1-17.
[5] MENQ C H, BIELAK J, GRIFFIN J H. The influence of micro-slip on vibratory response, PartⅠ: A new micro-slip model [J]. Journal of Sound and Vibration. 1980, 107(2): 279—293.
[6] CSABA G. Modeling micro-slip friction damping and its influence on turbine blade vibrations [D]. Linkoping University, Sweden, 1998;
[7] 徐自力,常东锋,刘雅琳. 基于微滑移解析模型的干摩擦阻尼叶片稳态响应分析 [J].振动工程学报,2008,21(5):505—510.
XU Zi-li, CHANG Dong-feng, LIU Ya-lin. Forced response analysis of blade system with dry friction dampers using one-bar micro-slip analytic model [J]. Journal of Vibration Engineering, 2008, 21(5):505—510.
[8] 张亮,袁惠群,韩清凯. 基于微动滑移摩擦模型的失谐叶盘系统振动分析[J]. 振动工程学报,2012,25(3):289—293.
ZHANG Liang, YUAN Hui-qun, HAN Qing-kai. Vibration analysis of mistuned bladed disk system based on micro-slip friction model[J]. Journal of Vibration Engineering, 2012,25(3):289—293.
[9] SEGALMAN D J. A four-parameter Iwan model for lap-type joints[J]. Journal of Applied Mechanics, 2005, 72(5): 752-760.
[10] DESHMUKH D, BERGER E. Dynamic analysis of a series Iwan model derived from a continuous frictional interface[J]. Journal of Vibration and Acoustics, 2015, 137(2): 021007.
[11] YANG B D, CHU M L, MENQ C H. Stick-slip-separation analysis and nonlinear stiffness and damping characterization of friction contacts having variable normal load [J]. Journal of Sound and Vibration, 1998,210(4): 461—481.
[12] GOLA M M, LIU T. A direct experimental-numerical method for investigations of a laboratory under-platform damper behavior[J]. International Journal of Solids and Structures,2014, 51(25-26): 4245—4259.
[13] ZUCCA S, FIRRONE C M. Nonlinear dynamics of mechanical systems with friction contacts: Coupled static and dynamic Multi-Harmonic Balance Method and multiple solutions [J]. Journal of Sound and Vibration, 2012, 333(2014):916—926.
[14] OLDFIELD M, OUYANG H, MOTTERSHEAD J E, Simplified models of bolted joints under harmonic loading [J]. Computers&Structures,2005, 84(1/2):25—33.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}