基于频率和振型等基本动力参数的损伤识别方法存在不足,准确性和适用性有待改进。提出将阻尼作为损伤识别的指标,探究阻尼与结构损伤之间的关系。论述阻尼与结构裂缝的数量和宽度及损伤演变的关系。通过对一跨简支T梁桥试验,采用自由振动法求阻尼比,获得了不同损伤等级损伤演变下的阻尼比。结果表明阻尼比随着损伤等级的增加呈现先增大后减小的变化过程,且正负位移对应的阻尼比的差值也具有先增大后减小的演化规律。阻尼比变化率大的位置,损伤程度大,可以利用阻尼比变化率实现基本损伤定位。与频率和振型相比,阻尼比更丰富敏感,可以作为钢筋混凝土桥梁的损伤识别指标,其拐点可以作为结构加固及维修的预警阀值。
Abstract
Damage detection method based on frequency and vibration and other basic dynamic parameters are deficient, the corresponding accuracy and applicability should be improved. Damping ratio is proposed as an indicator for damage detection in order to explore the relationship between the damping and structural damage. Analysis the relationship between damping and the number and width of structural crack and damage evolution. Through a simply supported T beams bridge experiment, free vibration method is used to calculate damping ratio, and damping ratios under different damage grades are obtained. The results showed that the damping ratio and the corresponding damping ratio of positive and negative displacement increases at first, then decreases with the damage grade increases. The location where the change rate of damping ratio is larger is the position severe damages occur. Thus, basic damage location detection can be realized by the difference of damping ratio. Compared with frequency and modes, damping ratio is more sensitive and diverse, so it can be used as indicators of damage detection for reinforced concrete bridge, and the inflection point as structural reinforcement and maintenance of early warning threshold.
关键词
损伤识别 /
钢筋混凝土桥梁 /
阻尼比 /
自由振动 /
裂缝
{{custom_keyword}} /
Key words
Damage detection /
reinforced concrete bridge /
damping ratio /
free vibration /
crack
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods[J]. The Shock and Vibration Digest.1998,30(2):92-105.
[2] Salane H J, Baldwin J W. Identification of modal properties of bridges [J]. Journal of Structural Engineering,1990,116(7):2008-2021.
[3] Salawu O S, Williams C. Structural damage detection using experimental modal analysis-acomparison of some methods[J]. Proceedings of SPIE - The International Society for Optical Engineering,1993,19(23):254-260.
[4] Salawu O S. Detection of structural damage through changes in frequency[J]. Engineering Structures,1997,19(9):718-723.
[5] Doebling S W, Farrar C R, Goodman R S. Effects of measurement statistics on the detection of damage in the Alamos Canyon Bridge[J]. Proceedings of SPIE - The International Society for Optical Engineering,1996,19(21):919-929.
[6] 段绍伟,向湘林,沈蒲生. 复杂阻尼结构阻尼模型研究[J]. 振动与冲击,2011,30(2):73-76.
Duan Shao-wei, Xiang Xiang-lin, Shen Pu-sheng. Complex damping structure damping model research [J]. Journal of Vibration and Shock, 2011, 30(2): 73-76.
[7] 赵晓丹,徐俊杰,王西富. 利用分段积分识别阻尼比研究[J]. 振动与冲击,2015,34(20):109-114.
Zhao Xiao-Dan, Xu Jun-jie, Wang Xi-fu. Using piecewise integral identification damping ratio research [J]. Journal of Vibration and Shock, 2015, 34(20): 109-114.
[8] Modena C, Sonda D, Zonta D. Damage localisation in reinforced concrete structures by using damping measurements[J]. Key Engineering Materials,1999,167(168):132–141.
[9] Soyoz S, Feng MQ. Seismic damage detection based on structural stiffness and experimental verification[J]. Structural Control and Health Monitoring,2008,15(7):958–973.
[10] 王卓,闫维明,秦栋涛. 钢混简支梁加载损伤后耗能特征试验研究[J]. 振动、测试与诊断,2009,29(1):66-70+118-119.
Wang Zhuo, Yan Wei-ming, Qin Dong-tao. ,et al. Dissipative Characteristic Investigation of simply-supported reinfored concrete beams with loading damages [J]. Journal of Vibration Measurement &Diagnosis, 2009, 29(1): 66-70+118-119.
[11] 顾大鹏. 基于阻尼特性的RC梁桥损伤识别与承载力快速评定方法[D]. 北京:北京工业大学,2013.
Gu Da-peng. Based on the damping characteristics of the RC beam bridge damage identification and rapid bearing capacity assessment method [D]. Beijing: Beijing University of Technology,2013.
[12] R. Crambuer,B. Richard,N.Ile F Ragueneau. Experimental characterization and modeling of energy dissipation in reinforced concrete beams subjected to cyclic loading[J]. Engineering Structures,2013,56(3):919–934.
[13] R.克拉夫、J.彭津 (美).王光远译 结构动力学(第2版)(修订版)[M]. 北京:高等教育,2006.
Krogh RW, Peng Jin J, Wang Guang-yuan, translate. Dynamics of Structural (Second edition) [M]. Beijing: Higher Education Press, 2006.
[14] 任宜春,易伟建. 钢筋混凝土梁的非线性振动识别研究[J]. 工程力学,2006,23(8):90-95.
Ren Yi-chun, Yi Jian-wei. The nonlinear vibration of reinforced concrete beam identification study [J]. Engineering Mechanices, 2006, 23(8): 90-95.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}