为了摆脱对高精度基准器具的依赖实现对嵌入式角位移传感器的现场标定,结合传感器的结构特点提出了一种利用单个读数头测量值差商的方法实现自我标定。该方法首先利用傅里叶逼近模型将读数头的误差分离为多次谐波的叠加,采用测量值向前差商的方法获取标定模型的中间变量,运用泰勒展开对差商方法进行了误差估计,并通过提高差商阶数降低模型误差,为了保证标定精度,结合最小二乘算法对标定参数进行了寻优。运用自标定方法对两台不同对极数的嵌入式角位移传感器进行了标定实验,并与传感器常用的比较标定方法进行了对比实验。实验结果表明,两台传感器的误差分别从标定前的±30″和±25″,降低至±2.6″和±2.2″,精度得到了大幅度提高,最终的标定参数与传感器实际的误差成分相吻合,标定精度与比较标定的精度基本相同,能够满足嵌入式角位移传感器的高精度、高效率标定要求。
Abstract
In order to get rid of the dependence of primary standard implement and realize field calibration of the embedded angle displacement sensor, a self-calibration method was proposed by using difference quotient of measured values by a discrete probe. With the proposed method, error function was separated into multiple harmonics by Fourier approach model. Ahead difference quotient of the measured values was used to obtain intermediate variable of the calibration model. The Taylor expansion was applied to estimate the model error, which was reduced by increasing the order of difference quotient. To ensure calibration precision, the least squares algorithm was used to find the optimal parameters. Two embedded angle displacement sensors were calibrated by using the proposed method, which was compared with the traditional method. The actual calibration experiments show that the original errors of two sensors have been reduced from ±30″ and ±25″ to ±2.6″ and ±2.2″, and the calibration parameters are consistent with actual sensor’s error component. The self-calibration precision is nearly the same to the accuracy of standard implement calibration and can be satisfied angle displacement sensor’s calibration requirements.
关键词
嵌入式角位移传感器 /
单读数头 /
差商法 /
自标定 /
标定精度
{{custom_keyword}} /
Key words
Embedded angle displacement sensor /
Discrete probe /
Difference quotient algorithm /
Self-calibration /
Calibration precision
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gumarov S G,Korsun O A. A method of determining the dynamic error of optical trajectory measurement stations[J]. Measurement Technique, 2011,54(3):281-286.
[2] 高策, 乔彦峰. 光电经纬仪测量误差的实时修正[J]. 光学精密工程, 2007, 15(6):846-851.
GAO Ce, QIAO Yan-feng. Real-time error-correction method for photoelectrical theodolitet[J]. Optics and Precision Engineering, 2007, 15(6):846-851.
[3] 高贯斌, 王文, 林铿, 等. 圆光栅角度传感器的误差补偿及参数辨识[J].光学精密工程, 2010, 8(18):1766-1772.
GAO Guan-bin, WANG Wen, LIN Jian, et al. Error compensation and parameter identification of circular grating angle sensors[J]. Optics and Precision Engineering, 2010, 8(18):1766-1772.
[4] 郭士旭, 余尚江, 陈晋央,等. 压电式压力传感器动态特性补偿技术研究[J]. 振动与冲击, 2016, 2 (35): 136-140.
Gao Shi-xu, Yu Shang-jiang, CHEN Jin-yang, et al. Dynamic compensation technique for piezoelectric pressure sensors[J]. Journal of Vibration and Shock, 2016, 2 (35): 136-140.
[5] R.Probst, R Writtekonf, M Krause,et al. The New PTB Angle Comparator[J].Measure Science Technology,1998,9(7):1059 -1066.
[6] MASUD A, KAJITANI P. An Automatic Calibration System for Angular Encoders[J]. Precision Engineering, 1989, 11(2):95-100.
[7] Orton P.A, Poliakoff J.F, Hatiris E, et al. Automatic Self-Calibration of an Incremental Motion Encoder[J]. Instrument Measure Technology, 2001,8(6):1617-1618.
[8] X.D L, TRUMPER D L. Self-Calibration of On-Axis Rotary Encoders[J]. Annals of the CIRP, 2007, 56(1):499-504.
[9] X.D. L, AMIN-SHAHIDI D.On-axis self-calibration of angle encoders[J].CIRP Annals Manufacturing Technology, 2010,59(1):529-534.
[10] 彭东林, 刘小康, 张兴红, 等. 基于谐波修正法的高精度时栅位移传感器[J]. 仪器仪表学报, 2006, 27(1):31-33.
PENG Dong-lin, LIU Xiao-kang, ZHANG Xing-hong, et al. High-precision time-grating displacement sensor based on harmonic wave correcting method[J]. Chinese Journal of Scientific Instrument, 2006, 27(1):31-33.
[11] 张宁, 沈湘衡, 杨亮, 等. 利用动态靶标谐波特性评价光电经纬仪的跟踪性能[J].光学精密工程, 2010, 18(6):1286-1293.
ZHANG Ning, SHEN Xing-heng, YANG Liang,et al. Evaluation of tracking performance of photoelectric theodolite by using harmonic property of dynamic target [J]. Optics and Precision Engineering, 2010, 18(6):1286-1293.
[12] 于梅. 低频振动传感器幅值和相移测量的不确定度[J]. 振动与冲击, 2009, 4(28): 106-110.
Yu Mei. Uncertainty of measurement of amplitude and phase shift of low frequency vibration sensor [J]. Journal of Vibration and Shock, 2009, 4(28): 106-110.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}