高温环境下汽油机排气歧管振动特性及疲劳寿命研究

张俊红1,2,张玉声1,王健1,徐喆轩1,戴胡伟1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 33-40.

PDF(2779 KB)
PDF(2779 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 33-40.
论文

高温环境下汽油机排气歧管振动特性及疲劳寿命研究

  • 张俊红1,2,张玉声1,王健1,徐喆轩1,戴胡伟1
作者信息 +

Research on the vibration characteristic and fatigue life of a Gasoline engine exhaust manifold in high temperature environment

  • Zhang jun-hong1,2, Zhang yu-sheng1,Wang jian1,Xu zhe-xuan1,Dai hu-wei1
Author information +
文章历史 +

摘要

为研究热载荷与机械载荷的耦合作用对排气歧管疲劳寿命的影响,对一款汽油机排气歧管进行热机耦合下的振动疲劳寿命分析。首先通过双向流固耦合的方法得到排气歧管的温度场,进而根据热应力及温度分布建立排气歧管的热机耦合模型,进行热载荷下的频率响应分析。通过计算对比发现:应力刚化效果及温度升高引起的材料力学性能退化使得排气歧管的刚度发生变化,导致频率响应分析得到的应力传递函数发生相应的改变,响应应力幅值及峰值频率均发生了不同程度的变化。振动疲劳寿命预测结果表明,考虑热机耦合的疲劳寿命较不考虑热机耦合的振动疲劳寿命降低了32.7%,热机耦合作用对疲劳寿命影响显著,不可忽视。

Abstract

In order to analyze the influence level of thermo-mechanical coupling on fatigue life of exhaust manifold, a fatigue analysis was performed based on thermo-mechanical coupling. First to calculate the temperature of the exhaust manifold based on two-way FSI, then establish a thermal-mechanical coupling model of exhaust manifold to perform the frequency response analysis based on the thermal stress and temperature distribution. The results show that the stress range and peak frequency are changed when temperature and thermal stress are taken into consideration, for different distribution of temperature and stress lead to different structure stiffness. The thermo-mechanical fatigue life is 32.7% lower than vibration fatigue life. Therefore the thermal-mechanical coupling has significant effects on fatigue life and can’t be ignored.
 

关键词

排气歧管 / 流固耦合 / 热机耦合 / 频率响应分析 / 振动疲劳

Key words

exhaust manifold / fluid-structure interaction / thermo-mechanical coupling / frequency response analysis / vibration fatigue

引用本文

导出引用
张俊红1,2,张玉声1,王健1,徐喆轩1,戴胡伟1. 高温环境下汽油机排气歧管振动特性及疲劳寿命研究[J]. 振动与冲击, 2017, 36(13): 33-40
Zhang jun-hong1,2, Zhang yu-sheng1,Wang jian1,Xu zhe-xuan1,Dai hu-wei1. Research on the vibration characteristic and fatigue life of a Gasoline engine exhaust manifold in high temperature environment[J]. Journal of Vibration and Shock, 2017, 36(13): 33-40

参考文献

[1] 杨云龙, 曹占义, 崔雷, 等. 汽车发动机排气歧管用耐热铸造合金的研究与发展[J]. 汽车工艺与材料, 2009 (5): 1-4.
Yang Yun-long, Cao Zhan-yi, Cui Lei, et al. The development and research of the Casting heat resistant alloy used in car exhaust manifold[J]. Automobile Technology & Material, 2009 (5): 1-4.
[2] Meda L, Lawrenz H, Romzek M, et al. Structural durability evaluation of exhaust system components[R]. SAE Technical Paper, 2007.
[3] Michiue M, Nishio K, Sugiura H, et al. Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems[R]. SAE Technical Paper, 2011.
[4] 易太连, 吴杰长, 刁爱民,等. 基于有限元和FE-SAFE的柴油机排烟管振动下的疲劳寿命[J]. 内燃机工程, 2008, 29(3):76-80.
Yi Tai-Lian, Wu Jie-chang, Diao A-min, et al. Study on Fatigue Life of Vibrating Exhaust Manifold of a Diesel Engine Using FEA and FE-SAFE Software[J]. Neiranji Gongcheng/chinese Internal Combustion Engine Engineering, 2005, 8(5-6):76-80.
[5] Sissa S, Giacopini M, Rosi R. Low-cycle thermal fatigue and high-cycle vibration fatigue life estimation of a diesel engine exhaust manifold[J]. Procedia Engineering, 2014, 74: 105-112.
[6] Santacreu P O, Faivre L, Acher A. Life prediction approach for stainless steel exhaust manifold[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(2012-01-0732): 904-910.
[7] 袁懋荣. 排气歧管热负荷与机械振动负荷的耦合分析[D]. 吉林大学, 2015.
Yuan Mao-rong.The Couping Analysis on Thermal Load And Mechanical Vibration Load of Exhaust Manifold[D]. Jilin University,2015.
[8] 邓帮林, 刘敬平, 杨靖,等. 基于双向流固耦合的汽油机排气歧管热应力分析[J]. 内燃机学报, 011(6):549-554.
Deng Bang-lin, Liu Jing-ping, Yang Jing, et al. Thermal stress analysis of gasoline engine exhaust manifold based on two-way FSI[J]. Transactions of Chinese Society for Internal Combustion Engines, 2011, 29(6): 549-554.
[9] 阚萍, 李源源, 吴道俊, 等. 基于频率响应分析的越野车车架疲劳寿命预估[J]. 车辆与动力技术, 2011, 122(2): 9-13.
KAN Ping, LI Yuan-yuan, WU Dao-jun, et al. Fatigue Life Prediction of SUV Frame Based on Frequency Response Analysis[J]. Vehicle & Power Technology, 2011, 2: 002.
[10] 王佳莹. 考虑温度影响下结构振动疲劳寿命估算[D]. 南昌航空大学, 2012.
Wang Jia-ying.Estimation of Structural Vibration Fatigue Life with Temperature Involved[D]. Nanchang Hangkong University,2012
[11] 庞剑,谌刚,何华. 汽车噪声与振动理论与应用[M]. 北京理大学出版社, 2008:238-268.
Pang Jian, Chen Gang, He Hua. Automotive Noise and Vibration[M].Beijing Institute of Technology Press, 2008:238-268.
[12] 袁毅. 基于应力功率谱的结构振动疲劳寿命预测方法研究[D]. 湖南大学, 2014.
Yuan Yi.Vibration Fatigue Life Prediction Method Research Based on Stress Power Spectrum[D]. Hunan University,2014
[13] 杨超, 郑清平, 张盼盼, 等. 基于模态分析的发动机排气歧管开裂问题研究[J]. 小型内燃机与车辆技术, 2015 (5): 53-56.
Yang Chao, Zheng Qing-ping, Zhang Pan-pan, et al. Analysis of the Exhaust Manifold Cracking Based on the Modal Analysis[J]. Small Internal Combustion Engine and Motorcycle, 2015 (5): 53-56.
[14]邢志伟. 基于振动疲劳的车身疲劳分析方法研究[D]. 河南工业大学, 2014.
Xing Zhi-wei.Vehicle Body Fatigue Analysis Method Base on Vibration Fatigue[D]. Henan University of Technology,2014
[15]王国军. MSC.FATIGUE疲劳分析实例指导教程[M]. 机械工业出版社, 2009:168-196.
Wang Guo-jun.MSC.FATIGUE Guide and Tutorial of fatigue analysis[M]. China Machine Press, 2009:168-196.

PDF(2779 KB)

463

Accesses

0

Citation

Detail

段落导航
相关文章

/