一种冲击波压力传感器的准静态校准神经网络模型

赵传荣,孔德仁1,王胜强2,商飞1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 92-95.

PDF(778 KB)
PDF(778 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (13) : 92-95.
论文

一种冲击波压力传感器的准静态校准神经网络模型

  • 赵传荣 ,孔德仁1,王胜强2,商飞1
作者信息 +

A kind of neural network model of quasi-static calibration of shock wave pressure sensor

  • ZHAO Chuan-Rong1; KONG De-Ren1; WANG Shen-Qiang ;SHANG Fei1
Author information +
文章历史 +

摘要

由冲击波压力传感器准静态校准原理,间接比对式校准的精度取决于重锤的落高与压力拟合模型的精度,本文采用RBF神经网络建立了以落高为输入量、冲击波压力峰值为输出量的神经网络模型。选用典型标准压力传感器,在7MPa~30MPa量程范围开展校准实验;通过对测试样本进行分析,结果表明:该神经网络模型预测的最大相对误差不超过0.04%,比多项式拟合模型和指数拟合模型高一个数量级。落高与压力拟合模型引入的不确定度是构成冲击波压力传感器动态测量不确定度的一个重要分量,通过建立高精度的重锤落高与冲击波压力峰值神经网络拟合模型,为进一步提高冲击波压力传感器的测量精度奠定了基础。

Abstract

By the principle of quasi-static calibration of shock wave pressure sensor, the comparison calibration accuracy depended on the accuracy of fitting model between the height of drop-hammer and pressure. The paper applied the RBF neural network to set up the neural network model whose input was the height of drop-hammer and output was the shock wave pressure peak. Choosing a certain type of standard pressure sensor, the calibration experiment was carried out in the range of 7MPa-30MPa. By analyzing the test samples, the result indicated that the maximum relative error of the neural network model is not more than 0.04% and a higher magnitude than the polynomial fitting model and exponential fitting model. The uncertainty introduced by the fitting model between the height of drop-hammer and pressure is an important component of dynamic measurement uncertainty of shock wave pressure sensor. Building the neural network fitting model between the height of drop-hammer and shock wave pressure peak will lay the foundation of improving the measurement accuracy of shock wave pressure sensor. 
 

关键词

冲击波压力传感器 / RBF神经网络 / 准静态校准 / 拟合模型

Key words

shock wave pressure sensor / RBF neural network / quasi-static calibration / fitting model

引用本文

导出引用
赵传荣,孔德仁1,王胜强2,商飞1. 一种冲击波压力传感器的准静态校准神经网络模型[J]. 振动与冲击, 2017, 36(13): 92-95
ZHAO Chuan-Rong1; KONG De-Ren1; WANG Shen-Qiang ;SHANG Fei1. A kind of neural network model of quasi-static calibration of shock wave pressure sensor[J]. Journal of Vibration and Shock, 2017, 36(13): 92-95

参考文献

[1]  XING Qin, ZHANG Jun and QIAN Min. Design, calibration and error analysis of a piezoelectric thrust dynamometer for small thrust liquid pulsed rocket engines [J ].Measurement, 2011(44):338-344.
[2]  孔德仁, 朱明武, 李永新, 等. 压力传感器准静态“绝对校准”[J]. 传感器技术,2001, 20(12): 32-34.
KONG De-ren, ZHU Ming-wu, LI Yong-xin, et al. Quasi- static absolute calibration on pressure-measuring sensors. Journal of Transducer Technology, 2001, 20(12): 32-34. (in Chinese)
[3]  张玉山, 元虎堂. 压电式传感器的准静态校准[J]. 计量与测试技术, 2009,36(1): 33-34.
ZHANG Yu-shan, YUAN Hu-tang. Quasi- static calibration method of piezoelectric transducers[J]. Metrology & Measurement Technique, 2009,36(1): 33-34. (in Chinese)
[4] 杜红棉,祖静,马铁华等.自由场传感器外形结构对冲击波测试的影响研究[J].振动与冲击,2011,30(11):85-89.
    DU Hongmian, ZU Jing, MA Tiehua,et al. Effect of mount configuration of free-field transducers on shock wave measurement[J]. Journal of Vibration ans Shock, 2011, 30(11): 85-89.(in Chinese)
[5] 李强, 王中宇, 王卓然, 等. 压力传感器激波管校准条件下的动态参数估计[J].北京航空航天大学学报, 2015,41(7):1223-1230.
    LI Qiang, WANG Zhongyu, WANG Zhuoran, et al. Dynamic parameter estimation of pressure transducer in shock tube calibration test[J].Journal of Beijing University of Aeronautics and Astronautics,2015, 41(7): 1223-1230.(in Chinese)
[6] 孔德仁, 朱明武, 李永新, 等. 量纲分析在传感器绝对校准建模中的应用[J]. 弹道学报,2002,14(1):93-96.
KONG De-ren, ZHU Ming-wu, LI Yong-xin, et al. The application of dimension analysis on making absolute calibration model of transducers[J]. Journal of Ballistics, 2002,14(1):93-96. (in Chinese)
[7]  孔德仁, 朱明武, 李永新, 等. 基于落锤动标装置的传感器准静态绝对校准方法[J]. 南京理工大学学报, 2002, 26(1): 48-51.
KONG De-ren, ZHU Ming-wu, LI Yong-xin, et al. Means of quasi-static absolute calibration of pressure-measuring transducers based on the drop-hammer dynamic pressure calibration system[J]. Journal of Nanjing University of Science and Technology, 2002, 26(1): 48-51. (in Chinese)
[8]  朱明武.压力准静态校准技术[J].宇航计测技术,2004, 24(2): 19-22.
ZHU Ming-wu. Pressure quasi-static calibration technology[J].Journal of Astronautic Metrology and Measurement, 2004, 24(2): 19-22. (in Chinese)
[9]  狄长安, 孟祥明, 边鹏, 等. 高压压电传感器静态与准静态校准方法研究[J]. 弹道学报, 2014,26(2): 86-89.
DI Chang-an, MENG Xiang-ming, BIAN Peng, et al. Analysis on static and quasi- static sensitivity characteristics of high-pressure piezoelectric sensors[J]. Journal of Ballistics, 2014, 26(2): 86-89. (in Chinese)
[10] 王丽, 刘训涛. 基于神经网络的压力传感器标定技术[J]. 煤炭技术, 2006,25(7): 109-110.
WANG Li, LIU Xun-tao. Calibration of pressure sensor based on neural network[J]. Coal Technology, 2006,25(7): 109-110. (in Chinese)
[11] 陈明. MATLAB神经网络原理与实例精解[M].  北京: 清华大学出版社, 2014.
    CHEN Ming. MATLAB neural network theory and example[M]. Beijing: Tsinghua University Press, 2014.(in Chinese)

PDF(778 KB)

445

Accesses

0

Citation

Detail

段落导航
相关文章

/