基于动力学共线刚度的空间隔振平台结构参数优化

张永亮1,郭百巍2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 116-120.

PDF(676 KB)
PDF(676 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 116-120.
论文

基于动力学共线刚度的空间隔振平台结构参数优化

  • 张永亮1,郭百巍2
作者信息 +

Structure Optimization for Space-based Vibration Isolation Platform Based on Dynamic Collinear Stiffness

  • ZHANG Yong-liang1, GUO Bai-wei2
Author information +
文章历史 +

摘要

针对空间隔振平台的参数优化设计问题,引入一个新的评价指标—动力学共线刚度。空间隔振平台上下平台的半径和相邻铰接点所对应的圆心角被选为设计变量,以最小动力学共线刚度的最大化为目标函数,以在指定的带宽内动力学共线刚度满足工程设计要求为约束条件,建立参数优化问题的模型,并以遗传算法为优化工具进行数值求解。仿真结果表明,经参数优化后的空间隔振平台满足工程设计指标要求。

Abstract

A new performance appraisal index is introduced to deal with the optimizing design about structure parameters of the space-based vibration isolation platform. Taking the radius of the top and the bottom platforms and the central angle for the adjacent connect points as the design variables, and then taking maximization of the minimum of the dynamic collinear stiffness as the objective function and taking the engineering design requirements which the dynamic stiffness to meet within the specified frequency range as the constraints. The mathematical model is built based on the design variables, the objective function and the constraints and the optimal solution is gotten by the GA tools. The simulation shows that the optimal solution meets the engineering design requirements and the performance appraisal index is better than the Cubic structure.

 

关键词

空间隔振平台 / 动力学共线刚度 / 遗传算法 / 优化设计

Key words

Vibration Isolation Platform / Dynamic Collinear Stiffness / Genetic algorithm / Optimization

引用本文

导出引用
张永亮1,郭百巍2. 基于动力学共线刚度的空间隔振平台结构参数优化[J]. 振动与冲击, 2017, 36(14): 116-120
ZHANG Yong-liang1, GUO Bai-wei2. Structure Optimization for Space-based Vibration Isolation Platform Based on Dynamic Collinear Stiffness[J]. Journal of Vibration and Shock, 2017, 36(14): 116-120

参考文献

[1] D.Stewart. A PLATFORM WITH SIX DEGREES OF FREEDOM, Proceedings of the Institution of Mechanical Engineers 1965-1966,Vol 180 Pt 1 No 15.
[2] Rao Koteswara AB, Rao PVM, Saha SK. Dimensional design of hexaslides for optimal workspace and dexterity. IEEE Transactions on Robotics 2005; 21(3):444-449.
[3] Gosselin CM, Angeles J. A global performance index for the kinematic optimization of robotic manipulators. ASME Journal of Mechanical Design 1991;113(3):220-226.
[4] Mansouri I, Ouali M. The power manipulability a new homogeneous performance index of robot manipulators. Robotics and Computer Integrated Manufacturing 2011;27(2):434-439.
[5] Hong KS, Kim JG. Manipulability analysis of a parallel machine tool:application to optimal link length design. Journal of Robotic Systems 2000;17(8):403-415.
[6] Lecours A, Gosselin CM. Reactionless two-degree-of-freedom planar parallel mechanism with variable payload. ASME Journal of Mechanisms and Robotics 2010; 2(4):041010-1-7.
[7] Ilia D, Sinatra R. A novel formulation of the dynamic balancing of five-bar linkages with applications to link optimization. Multibody System Dynamics 2009;21(2):193-211.
[8] Ma O, Angeles J. Optimum design of manipulators under dynamic isotropy conditions. In Proceedings of the IEEE international conference on robotics and automation. Atlanta,USA;
1993,p470-475.
[9] Tong ZZ, He JF, Jiang HZ,Duan GR. Optimal design of a class of generalized symmetric Gough-Stewart parallel manipulators with dynamic isotropy and singlarity-free
workspace. Robotica 2012; 30(2):305-314.
[10] Li HH, Yang ZY, Huang T. Dynamics and elasto-dynamics optimization of a 2-dof planar parallel pick-and-place robot with flexible links. Structural and Multidisciplinary Optimization 2009;38(2):195-204.
[11] Da Silva MM, de Oliveira of a 2-dof high-speed parallel manipulator: a flexible model-based approach. Mechanism and Machine Theory 2010;45(11):1509-1519.
[12] Xu QS, Li YM. Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization. Robotica 2009;27(1):67-78.
[13] Chi ZZ, Zhang D. Stiffness optimization of a novel reconfigurable parallel kinematic manipulator. Robotica 2012;30(3):433-447.
[14] 夏禹,黄海. Hexapod 平台参数设计优化. 航空学报,2008年第29卷,第5期,1168-1173.
     Xia Yu,Huang Hai. Design Optimization for Hexapod Platform Parameters. Acta Aeronautica Et Astronau Tica Sinica 2008:29(5):1168-1173.
[15] V.T.Portman, V.S.Chapsky and Y. Shneor, Evaluation and optimization of dynamic stiffness values of the PKMS: Colinear stiffness value approach, Mechanism and Mechine Theory 74(2014) 216-244.

PDF(676 KB)

338

Accesses

0

Citation

Detail

段落导航
相关文章

/