混凝土受酸腐蚀后的动力学性能弱化及微观结构研究

聂良学1, 2,许金余1, 3,王宏伟4,刘志群1,罗鑫5

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 126-132.

PDF(2001 KB)
PDF(2001 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 126-132.
论文

混凝土受酸腐蚀后的动力学性能弱化及微观结构研究

  • 聂良学1, 2,许金余1, 3,王宏伟4,刘志群1,罗鑫5
作者信息 +

Study on the degradation of dynamic mechanical properties and the microstructure of concrete after acid attack

  • NIE Liang-xue1, 2, XU Jin-yu1, 3,WANG Hong-wei4,LIU Zhiqun1,LUO Xin5
Author information +
文章历史 +

摘要

为探究混凝土受酸腐蚀后的动力学性能弱化机理,对受酸溶液浸泡腐蚀60 d后混凝土试件的动态强度及能量展开研究,并结合扫描电镜(SEM)深入分析了动力学性能的弱化机理。试验结果表明:试件浸泡腐蚀60 d后,其动态抗压强度和冲击韧性均随应变率的升高具有较强的率敏感性,且整体上二者均下降明显;试件内部结构受到破坏,孔隙增多,水化反应产生的晶体、凝胶及诸多未参与水化反应颗粒散乱分布,毫无规律。酸性环境对混凝土的腐蚀效果十分显著,极大地弱化了混凝土的动态力学性能。

Abstract

For the purpose of delve deep into the mechanism of dynamic mechanical properties degradation of concrete after acid attack, a comparative study is done between dynamic compressive strength ( ), impact toughness (IT) and scanning electron microscope (SEM) to understand the micro-level aspect of concrete specimens which have been immersed in acidic solution. Results of the experimental indicated that: After 60-days acid corrosion, the   and IT both increase with the increasing of strain rate, and have a significant drop, too; The original structure of concrete has been destroyed, and the internal porosity has been increased, the unhydrated cement particles and products of hydration reaction such as crystal and gel are straggling and disordering. The acid environment has a significant effect of weaken the mechanical performance of concrete.

关键词

酸腐蚀 / 动态抗压强度 / 冲击韧性 / 应变率 / 扫描电镜

Key words

 Acid corrosion / Dynamic compressive strength / Impact toughness / Strain rate / Scanning electron microscopy

引用本文

导出引用
聂良学1, 2,许金余1, 3,王宏伟4,刘志群1,罗鑫5. 混凝土受酸腐蚀后的动力学性能弱化及微观结构研究[J]. 振动与冲击, 2017, 36(14): 126-132
NIE Liang-xue1, 2, XU Jin-yu1, 3,WANG Hong-wei4,LIU Zhiqun1,LUO Xin5. Study on the degradation of dynamic mechanical properties and the microstructure of concrete after acid attack[J]. Journal of Vibration and Shock, 2017, 36(14): 126-132

参考文献

[1]  金祖权, 孙伟, 张云升, 等, 混凝土在硫酸盐氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34(5): 630-635.
JIN Zu-quan, SUN Wei, ZHANG Yun-sheng, Damage of concrete in sulfate and chloride solution[J]. Journal of the Chinese Ceramic Society, 2006, 34(5): 630-635.
[2]  Fan Y F, Hu Z Q, Zhang Y Z, et al. Deterioration of compressive property of concrete under simulated acid rain environment[J]. Construction and Building Materials, 2010, 24(10): 1975-1983.
[3]  Gerengi H, Kocak Y, Jazdzewska A, et al. Electrochemical investigations on the corrosion behaviour of reinforcing steel in diatomite-and zeolite-containing concrete exposed to sulphuric acid[J]. Construction and Building Materials, 2013, 49: 471-477.
[4]  Hekal E E, Kishar E, Mostafa H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427.
[5]  Song H, Chen J. Effect of damage evolution on poisson's ratio of concrete under sulfate attack[J]. Acta Mechanica Solida Sinica, 2011, 24(3): 209-215.
[6]  Sun C, Chen J, Zhu J, et al. A new diffusion model of sulfate ions in concrete[J]. Construction and Building Materials, 2013, 39: 39-45.
[7] Gama B A. Split Hopkinson pressure bar technique: experiments, analyses and applications. United States: the Faculty of the University of Deevolutionare, Spring; 2004.
[8]  胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾[J]. 爆炸与冲击, 2014, 34(6): 641-657.
Hu Shi-sheng, Wang Li-li, Song Li, et al, Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6): 641-657.
[9]  Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1): 263-267.
[10] Yuan H, Dangla P, Chatellier P, et al. Degradation modeling of concrete submitted to biogenic acid attack[J]. Cement and Concrete Research, 2015, 70: 29-38.
[11] Bazle A G. Split Hopkinson pressure bar technique: experiments, analyses and applications. United States: the Faculty of the University of Delaware, Spring; 2004.
[12] 赵习金,卢芳云,王悟,等.入射波整形技术的实验和理论研究[J].高压物理学报,2004,18(3):231-236.
ZHAO Xi-jin, LU Fang-yun, WANG Wu, et al. The experimental and theoretical study on the incident pulse shaping technique [J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 231-236.
[13] 李为民,许金余. 大直径分离式霍普金森压杆试验中的波形整形技术研究[J]. 兵工学报,2009,30(3):350-355.
LI Wei-min, XU Jin-yu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test [J]. Acta Armamentarii, 2009,30(3):350-355.
[14] 王海龙, 李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理[J]. 水利学报, 2006, 37(8): 958-968.
WANG Hai-long, LI Qing-bin. Micro-mechanism of static and dynamic strengths for saturated concrete[J]. Journal of Hydraulic Engineering, 2006, 37(8): 958-968.
[15] Luo X, Sun W, Chan S Y N. Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete[J]. Cement and Concrete Research, 2000, 30(3): 379-383.
[16] Gregerová M, Všianský D. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy[J]. Materials Characterization, 2009, 60(7): 680-685.
[1]  金祖权, 孙伟, 张云升, 等, 混凝土在硫酸盐氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34(5): 630-635.
JIN Zu-quan, SUN Wei, ZHANG Yun-sheng, Damage of concrete in sulfate and chloride solution[J]. Journal of the Chinese Ceramic Society, 2006, 34(5): 630-635.
[2]  Fan Y F, Hu Z Q, Zhang Y Z, et al. Deterioration of compressive property of concrete under simulated acid rain environment[J]. Construction and Building Materials, 2010, 24(10): 1975-1983.
[3]  Gerengi H, Kocak Y, Jazdzewska A, et al. Electrochemical investigations on the corrosion behaviour of reinforcing steel in diatomite-and zeolite-containing concrete exposed to sulphuric acid[J]. Construction and Building Materials, 2013, 49: 471-477.
[4]  Hekal E E, Kishar E, Mostafa H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427.
[5]  Song H, Chen J. Effect of damage evolution on poisson's ratio of concrete under sulfate attack[J]. Acta Mechanica Solida Sinica, 2011, 24(3): 209-215.
[6]  Sun C, Chen J, Zhu J, et al. A new diffusion model of sulfate ions in concrete[J]. Construction and Building Materials, 2013, 39: 39-45.
[7] Gama B A. Split Hopkinson pressure bar technique: experiments, analyses and applications. United States: the Faculty of the University of Deevolutionare, Spring; 2004.
[8]  胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾[J]. 爆炸与冲击, 2014, 34(6): 641-657.
Hu Shi-sheng, Wang Li-li, Song Li, et al, Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6): 641-657.
[9]  Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1): 263-267.
[10] Yuan H, Dangla P, Chatellier P, et al. Degradation modeling of concrete submitted to biogenic acid attack[J]. Cement and Concrete Research, 2015, 70: 29-38.
[11] Bazle A G. Split Hopkinson pressure bar technique: experiments, analyses and applications. United States: the Faculty of the University of Delaware, Spring; 2004.
[12] 赵习金,卢芳云,王悟,等.入射波整形技术的实验和理论研究[J].高压物理学报,2004,18(3):231-236.
ZHAO Xi-jin, LU Fang-yun, WANG Wu, et al. The experimental and theoretical study on the incident pulse shaping technique [J]. Chinese Journal of High Pressure Physics, 2004, 18(3): 231-236.
[13] 李为民,许金余. 大直径分离式霍普金森压杆试验中的波形整形技术研究[J]. 兵工学报,2009,30(3):350-355.
LI Wei-min, XU Jin-yu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test [J]. Acta Armamentarii, 2009,30(3):350-355.
[14] 王海龙, 李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理[J]. 水利学报, 2006, 37(8): 958-968.
WANG Hai-long, LI Qing-bin. Micro-mechanism of static and dynamic strengths for saturated concrete[J]. Journal of Hydraulic Engineering, 2006, 37(8): 958-968.
[15] Luo X, Sun W, Chan S Y N. Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete[J]. Cement and Concrete Research, 2000, 30(3): 379-383.
[16] Gregerová M, Všianský D. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy[J]. Materials Characterization, 2009, 60(7): 680-685.

PDF(2001 KB)

Accesses

Citation

Detail

段落导航
相关文章

/